М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
мили241
мили241
16.10.2020 07:32 •  Другие предметы

Теория вероятности
на контроль поступила партия деталей из цеха. известно, что в среднем 5% всех деталей не удоалетворяют стандарту. сколько нужно испвтать деталей, чтобы с вероятностью не менее чем 0,95 обнаружить хотябы одну нестандартную деталь?

👇
Ответ:
ksimonova196
ksimonova196
16.10.2020
Для решения этой задачи воспользуемся примером из теории вероятности, который называется "парадоксом дней рождений".

Вероятность того, что в партии деталей будет хотя бы одна нестандартная деталь, равна 1 минус вероятность того, что все детали являются стандартными.

Для нахождения этой вероятности нужно знать долю нестандартных деталей в партии из цеха. По условию задачи, известно, что в среднем 5% всех деталей не удовлетворяют стандарту. Это означает, что в каждой партии из 100 деталей ожидается примерно 5 нестандартных деталей.

Пусть n - количество деталей, которое нужно проверить, чтобы с вероятностью не менее чем 0,95 обнаружить хотя бы одну нестандартную деталь.

Если проверить только 1 деталь, то вероятность обнаружить нестандартную деталь будет равна 5% (или 0,05).

Если проверить 2 детали, то вероятность обнаружить нестандартную деталь будет равна вероятности того, что оба детали являются стандартными, то есть (95%)^2, что составляет 0,9025. Вероятность обнаружить хотя бы одну нестандартную деталь будет равна 1 минус вероятность обоих деталей будут стандартными, т.е. 1 - 0,9025 = 0,0975.

Обобщая это рассуждение, можно сказать, что вероятность обнаружить хотя бы одну нестандартную деталь при проверке n деталей равна 1 - (вероятность обоих деталей будут стандартными)^n.

Мы знаем, что мы хотим достичь вероятности не менее чем 0,95, поэтому установим неравенство:

1 - (0,95)^n ≥ 0,95.

Здесь 0,95 - это желаемая вероятность обнаружить хотя бы одну нестандартную деталь, и как раз то, что мы хотим достичь. Теперь давайте решим это неравенство:

1 - (0,95)^n ≥ 0,95.

(0,95)^n ≤ 1 - 0,95.

(0,95)^n ≤ 0,05.

Возьмем логарифм от обеих сторон неравенства:

n * log(0,95) ≤ log(0,05).

Теперь поделим обе части неравенства на log(0,95):

n ≤ log(0,05) / log(0,95).

Таким образом, чтобы с вероятностью не менее чем 0,95 обнаружить хотя бы одну нестандартную деталь, нужно проверить n деталей, где n максимальное целое число, меньшее или равное log(0,05) / log(0,95).

Используя калькулятор или программу, мы получаем, что n ≥ 61,14. Так как количество деталей целое число, мы округляем вверх и получаем, что нужно проверить как минимум 62 детали, чтобы с вероятностью не менее чем 0,95 обнаружить хотя бы одну нестандартную деталь.

Надеюсь, это объяснение понятно для школьника! Если у тебя есть еще вопросы, не стесняйся задавать.
4,4(42 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Другие предметы
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ