Решение.
Через прямые А1А2 и В1В2 можно повести плоскость, которая пересечёт параллельные плоскости по параллельным прямым А1В1 и А2В2.
У образовавшихся треугольников ОА1В1 и ОА2В2 соответствующие углы равны. Углы при вершине О равны как вертикальные, а остальные - как внутренние накрест лежащие у параллельных прямых. Следовательно треугольники ОА1В1 и ОА2В2 подобны.
У подобных треугольников соответствующие стороны соотностятся через коэффициент подобия.
Решение.
Через прямые a и b проведем плоскость, образованную этими пересекающимися прямыми. В этой плоскости лежат треугольники A2KB2 и A1KB1. Эти треугольники подобны, так как угол К у них общий, а остальные углы также равны, так как образованы секущими KA2 и KB2 на параллельных прямых A1B1 и A2B2, так как плоскости альфа и бета - параллельны.
Таким образом, коэффициент подобия верен для соотношения любых двух соответствующих сторон, то есть:
KB2 : KB1 = 4:3
Откуда
KB2 : 14 = 4:3
KB2 = 14 * 4 / 3 = 56/3 = 18 2/3 см
если с1 > c2, то Т1 < T2