Основная идея решения задачи заключается в том, что если из суммы возрастов трёх девочек вычесть сумму возрастов двух из них, то получится возраст третьей девочки.
Так как Вере, Наде и Любе вместе 38 лет, а Вере и Наде вместе 28 лет, то Любе 38 – 28 = 10 лет. Так как Наде и Любе вместе 23 года, а Любе 10 лет, то Наде 23 – 10 = 13 лет. Так как Вере и Наде вместе 28 лет, а Наде 13 лет, то Вере 28
– 13 = 15 лет.
Для сравнения можно привести ещё одно решение.
Обозначим количество лет Веры, Нади и Любы соответственно В, Н и Л. Тогда условия задачи можно записать в виде трёх верных равенств:
В + Н + Л = 38,
В + Н = 28,
Н + Л = 23.
Вычитая из первого равенства второе, а потом третье, получим, что
Л =10, В = 15. Теперь легко вычислить возраст Нади:
Н = 38 – 10 – 15 = 13.
Ответ. Вере 15 лет, Наде 13 лет, Любе 10 лет.
Лидия Михайловна поняла, что помощи мальчик не примет, и решила использовать известное ему средство — игру на деньги. Она специально подстраивается под мальчика, например просит не выдавать ее Василию Андреевичу, директору. Это удивляет его: «Светопреставление — не иначе!» Учительница подзадоривает мальчика испытанными, безотказными приемами: «Неужели боишься?» (вспомним: на такую же «уду» попался герой рассказа Астафьева; разница в том, что учительница желала мальчику добра); поддается ему, а когда он разоблачает нечестную игру, делает вид, что бессовестно обманывает героя, что ей очень весело и интересно играть в «замеряшки». Так она добилась того, что мальчик стал выигрывать деньги, считая их «честным выигрышем», и покупать себе молоко