Для того чтобы найти верный ответ необходимо разбить числа на последовательные тройки чисел. Сумма каждой тройки по условию положительная, следовательно, тот ряд чисел, который делится на последовательные тройки без остатка, записать по условию задачи можно. Тот же ряд чисел, который не делится на последовательные тройки без остатка, записать нельзя, так как оставшиеся числа могут быть отрицательными и по модулю могут быть больше результата сложения сумм последовательных троек чисел. Поэтому:
а) 18 : 3 = 6 троек чисел, по условию сумма каждой тройки положительная, поэтому и сумма результатов сложения всех 6 троек также положительна.
б) записать нельзя, так как 19 : 3 = 6 последовательных троек и еще 1 число. Это последнее число может быть отрицательным и по модулю быть больше чем сумма результатов сложения всех 6−и троек, поэтому сумма всех 19 чисел может быть отрицательной.
Например: −8, −8, 17, −8, −8, 17, −8, −8, 17, −8, −8, 17, −8, −8, 17, −8, −8, 17, −8
Каждая последовательная тройка имеет вид: −8, −8, 17, ее сумма равна:
−8 + (−8) + 17 = −16 + 17 = 1
сумма результатов сложения всех 6 троек равна:
1 * 6 = 6
Последнее 19−ое число −8 и |−8|>|6|, следовательно, сумма всех 19 чисел отрицательна.
в) нельзя, так как сумма последние 2 числа могут быть отрицательными и их сумма по модулю может быть больше чем сумма результатов сложения всех 6−и троек, следовательно, сумма всех 20 чисел будет отрицательной.
Например: −8, −8, 17, −8, −8, 17, −8, −8, 17, −8, −8, 17, −8, −8, 17, −8, −8, 17, −8, −8
Каждая последовательная тройка имеет вид: −8, −8, 17, ее сумма равна:
−8 + (−8) + 17 = −16 + 17 = 1
сумма результатов сложения всех 6 троек равна:
1 * 6 = 6
Сумма последних двух чисел равна:
−8 + (−8) = −16, |−16|>|6|, следовательно, сумма всех 20 чисел отрицательна.
а) первые 5 вынутых шаров могут быть черными, а значит в мешке останутся только белые шары. Поэтому за два последующих вынимания мы выполним условие задачи, следовательно:
5 + 2 = 7 шаров нужно вынуть, чтобы можно было утверждать что среди них обязательно есть 2 белых шара;
б) первые 10 вынутых шаров могут быть белыми, а значит в мешке останутся только черные шары. Поэтому за два последующих вынимания мы выполним условие задачи, следовательно:
10 + 2 = 12 шаров нужно вынуть, чтобы можно было утверждать что среди них обязательно есть 2 белых шара;
в) первые 10 вынутых шаров могут быть белыми, а значит в мешке останутся только черные шары. Поэтому за следующее вынимание мы выполним условие задачи, следовательно:
10 + 1 = 11 шаров нужно вынуть, чтобы можно было утверждать что среди них обязательно есть 2 разноцветных шара;
д) первые 2 вынутых шара могут быть разноцветными, поэтому за следующее вынимание мы выполним условие задачи, следовательно:
2 + 1 = 3 шара нужно вынуть, чтобы можно было утверждать что среди них обязательно есть 2 шара одинакового цвета.
Ответ:
а) 7 шаров;
б) 12 шаров;
в) 11 шаров;
г) 3 шара.
ТТТТТТ
Объяснение:
БББТТТ