Рассмотрим треугольники ADC, BDC, CDB, составляющие грани тетраэдра. Каждый треугольник проведенным в нем отрезком делится на два подобных треугольника, т.к. тот отрезок - средняя линия треугольника и потому параллелен основанию.
Соединив точки К, Е и М, получим треугольник КЕМ, плоскость которого параллельна плоскости АDВ по свойству пересекающихся прямых: · Если две пересекающиеся прямые в одной плоскости соответственно параллельны двум пересекающимся прямым в другой плоскости, то и плоскости параллельны.
Δ АDВ и Δ КЕМ подобны по всем трем признакам подобия треугольников.
Отношения площадей подобных треугольников равно квадрату коэффициента их подобия. Так как стороны образующих грани треугольников относятся как 2:1, то площади Δ АDВ и Δ КЕМ относястя как 4:1.
Площадь треугольника ADB больше площади треугольника КЕМ в 4 раза и равна27·4=108 см²
Немало произведений месопотамского искусства связано с религиозными и мифологическими сюжетами. В сказаниях и поэмах часто рассказывается о фантастических существах - полу людях полу животных, постоянно сопровождающих богов, героев и обычных людей.
Наиболее известный пример- "стражи" дворца ассирийского царя. Это ШЕДУ - крылатые быки с пятью ногами и человеческими лицами. Лишняя нога у этих сказочных животных сделана специально, для того чтобы создать оптический эффект: человеку, проходящему через ворота, кажется, что могучий страж движется ему навстречу и готов в любую минуту преградить путь тому, кто несёт зло.
Рассмотрим треугольники ADC, BDC, CDB, составляющие грани тетраэдра. Каждый треугольник проведенным в нем отрезком делится на два подобных треугольника, т.к. тот отрезок - средняя линия треугольника и потому параллелен основанию.
Соединив точки К, Е и М, получим треугольник КЕМ, плоскость которого параллельна плоскости АDВ по свойству пересекающихся прямых:
· Если две пересекающиеся прямые в одной плоскости соответственно параллельны двум пересекающимся прямым в другой плоскости, то и плоскости параллельны.
Δ АDВ и Δ КЕМ подобны по всем трем признакам подобия треугольников.
Отношения площадей подобных треугольников равно квадрату коэффициента их подобия. Так как стороны образующих грани треугольников относятся как 2:1, то площади Δ АDВ и Δ КЕМ относястя как 4:1.
Площадь треугольника ADB больше площади треугольника КЕМ в 4 раза и равна27·4=108 см²