Проведем отрезок A1B1 и рассмотрим треугольники EB1A и EA1B.
∠A1EB=∠B1EA (так как они вертикальные).
∠EB1A=∠EA1B=90° (так как BB1 и AA1 - высоты).
По первому признаку подобия треугольников, рассматриваемые треугольники подобны.
Следовательно:
EB1/EA1=EA/EB
Рассмотрим треугольники EA1B1 и EAB
∠BEA=∠B1EA1 (так как они вертикальные).
Как мы выяснили ранее:
EB1/EA1=EA/EB
Умножим левую и правую части равенства на EA1, получим:
EB1=EA1*EA/EB
Разделим левую и правую части на EA, получаем:
EB1/EA=EA1/EB
Получается, что по второму признаку подобия треугольников, треугольники EA1B1 и EAB подобны.
Следовательно, по определению, углы AA1B1 и ABB1 равны
Площадь трапеции равна произведению высоты на полусумму оснований:
SABCD=h*(BC+AD)/2=h*l, где l - средняя линия трапеции l=(BC+AD)/2. Следовательно, нам надо найти высоту h.
Продлим основание AD и проведем отрезок из вершины C, параллельный BD до пересечения с продленным основанием в точке M (как показано на рисунке).
В четырехугольнике BCMD сторона CM||BD (мы сами так провели СМ) и DM||BC (по определению трапеции).
Следовательно, четырехугольник BCMD - параллелограмм.
Тогда, по свойству параллелограмма, DM=BC.
AM=AD+DM=AD+BC=2l=2*10=20
Рассмотрим треугольник ACM.
Мы знаем длины всех его сторон, следовательно можем найти площадь через полупериметр:
Полупериметр p=(AC+CM+AM)/2=(AC+BD+AM)/2=(15+7+20)/2=21
SACM=√p(p-AC)(p-CM)(p-AM)=√21(21-15)(21-7)(21-20)=√21*6*14*1=√1764=42
По другой формуле SACM=h*AM/2=42
h=2*42/AM=2*42/20=4,2
Теперь мы можем вычислить площадь трапеции:
SABCD=h*l=4,2*10=42
Ответ: 42
не знаю прост