Творчеством Сальвадора Дали был восхищён Уолт Дисней - один из самых признанных представителей мировой мультипликации. Оба мастера начали работать над совместным проектом который должен был стать воплощением сюрреализма в 1945 году появился отрывок 18 секунд и большое количество рисунок но окончательно проект удалось реализовать только в начале XXI века в 2003 году появился новый анимационный фильм Дестино в котором зритель видит движение известные и специально созданные образы дали Посмотрите в информационных источниках начало мультфильма Дестина какую известную работу Сальвадора дали вы в нём узнали Сопоставьте образы созданные средствами живописи и анимации
Предположим, что семиугольник только один. Тогда количество вершин у шестиугольников равно 40 − 7 = 33. Этого не может быть, потому что число 33 на 6 не делится.
Если семиугольников два, то количество вершин у шестиугольников равно 40 − 14 = 26, чего быть не может.
Если семиугольников три, то количество вершин у шестиугольников равно 40 − 21 = 19, чего быть не может.
Если семиугольников четыре, то количество вершин у шестиугольников равно 40 − 28 = 12. Значит, может быть 2 шестиугольника.
Больше четырёх семиугольников быть не может.
Ответ: 2.
Предположим, что семиугольник только один. Тогда количество вершин у шестиугольников равно 40 − 7 = 33. Этого не может быть, потому что число 33 на 6 не делится.
Если семиугольников два, то количество вершин у шестиугольников равно 40 − 14 = 26, чего быть не может.
Если семиугольников три, то количество вершин у шестиугольников равно 40 − 21 = 19, чего быть не может.
Если семиугольников четыре, то количество вершин у шестиугольников равно 40 − 28 = 12. Значит, может быть 2 шестиугольника.
Больше четырёх семиугольников быть не может.
Ответ: 2.
Если семиугольников два, то количество вершин у шестиугольников равно 40 − 14 = 26, чего быть не может.
Если семиугольников три, то количество вершин у шестиугольников равно 40 − 21 = 19, чего быть не может.
Если семиугольников четыре, то количество вершин у шестиугольников равно 40 − 28 = 12. Значит, может быть 2 шестиугольника.
Больше четырёх семиугольников быть не может.
Ответ: 2.