М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dkurmanbek
dkurmanbek
03.10.2021 08:31 •  Другие предметы

Кого греки считали граждан ином?

👇
Ответ:
azerzhanovaa
azerzhanovaa
03.10.2021
Одним из самых важных понятий для любого грека было понятие «гражданин». Гражданин полиса имел три главных права:
•  право собственности на участок земли в полисе;
•  право на участие в Народном собрании;
•  право на защиту своей родины — участие в народном ополчении (ополчение созывалось в случае военной угрозы).
Гражданином полиса считался только тот, чей отец и мать были гражданами полиса. Если один из родителей не был гражданином, то и ребенок гражданином не являлся.
4,8(23 оценок)
Открыть все ответы
Ответ:
3^(log2(x^2))+2*IxI^(log2(9)<=3*(1/3)^(log1/2(2x+3))
ОДЗ: x≠0; 2x+3>0⇒x>-3/2
Применяемые формулы: a^(m/n)=(a^m)^(1/n); (a^m)^n=a^(m*n)
Все формулы справедливы как справа налево, так и слева направо
a^(loga(b)=b - основное логарифмическое тождество
Читается: a в степени логарифм b по основанию a равен  b
Формулы перехода к другому основанию:
loga(b)=logc(b): logc(a); loga(b)=1:logb(a), где b>0, c>0, c≠1
Перейдем в log2(x^2) к основанию 3, чтобы воспользоваться основным тригонометрическим тождеством
log2(x^2)=log3(x^2):log3(2)⇒3^(log2(x^2))=3^(log3(x^2)/log3(2))=(3^(log3(x^2))^(1/log3(2))=(3^(log3(x^2))^(log2(3)=(x^2)^(log2(3)
(IxI)^(log2(9))=(IxI)^(log2(3^2))=(IxI)^(2log2(3))=(IxI^2)^(log2(3))=(x^2)^(log2(3))
(IxI)^2=x^2
(x^2)^(log2(3)+2(x^2)^(log2(3)=3*(x^2)^(log2(3) - выражение в левой части нер-ва
Займемся правой частью
В показателе степени перейдем к основанию 2:
log1/2(2x+3)=log2(2x+3):log2(1/2)
log2(1/2)=-1, так как 2(-1)=1/2^1=1/2
log1/2(2x+3)=log2(2x+3):(-1)=-log2(2x+3)
Полезна формула a^(-n)=1/a^n
Из выше сказанного имеем:
(1/3)^(log1/2(2x+3))=(3^(-1))^(-log2(2x+3))=3^(log2(2x+3))
Перейдем в log2(2x+3) к основанию 3, чтобы воспользоваться основным тригонометрическим тождеством
log2(2x+3)=log3(2x+3):log3(2)
3^(log2(2x+3))=3^(log3(2x+3):log3(2))=(3^(log3(2x+3))^(1/log3(2)=
=(3^(log3(2x+3))^(log2(3)=(2x+3)^(log2(3)
Итак, справа получаем выражение 3*(2x+3)^(log2(3)
Неравенство имеет вид
3*(x^2)^(log2(3)<=3*(2x+3)^(log2(3)⇒(x^2)^(log2(3)<=(2x+3)^(log2(3)
log2(3)>1
Рассмотрим значения левой и правой частей в области определения (-3/2;+∞)
Нужно определить, где каждое основание больше 1 и где меньше 1. Это нужно для дальнейшего сравнения.
x^2<=1, если -1<=x<=1
x∈(-3/2;-1)⇒x^2>1
x∈[-1;0)∨(0;1]⇒x^2<=1
x∈(1;+∞)⇒x^2>1
2x+3>=1⇒2x>-2⇒x>=-1
x∈(-3/2;-1)⇒2x+3<1
x∈[-1;0)∨(0;1]⇒2x+3>=1
x∈(1;+∞)⇒2x+3>1
Теперь проведем сравнение  в каждом интервале
1) x∈(-3/2;-1)
x^2>1; (2x+3)<1⇒(x^2)^(log2(3))>(2x+3)^(lo2(3))
В этом интервале решений нет
2) x∈[-1;0)∨(0;1]
x^2<=1; 2x+3>=1⇒(x^2)^(log2(3))<=(2x+3)^(log2(3))
Каждое значение из этого интервала является решением
3)x∉(1;+∞)
x^2>=1; 2x+3>=1
Неравенство будет верным, если x^2<=2x+3⇒x^2-2x-3<=0
Решим уравнение: x^2-2x-3=0. По теореме Виетта x1+x2=2; x1*x2=-3⇒
x1=3; x2=-1. Эти значения разбивают числовую ось на 3 промежутка:
(-∞;-1); [-1;3]; (3;+∞)
По методу интервалов в крайнем справа будет +, дальше идет чередование.
x^2-2x-3<=0⇒x∈[-1;3], а в нашем интервале x∈(1;3]
Объединяя 2) и 3) получаем x∈[-1;0)∨(0;3]
4,4(82 оценок)
Ответ:
evakuleva
evakuleva
03.10.2021
Ставим ножку циркуля в вершину О прямого угла и проводим окружность произвольного радиуса. эта окружность пересекает стороны угла в двух точках А и В.  Устанавливаем циркулем расстояние АВ и проводим окружность из точка А радиусом АВ, а затем строим точно такую же окружность из точки В. Эти две окружности пересекутся в точке С. Проведём луч ОС это и есть биссектриса прямого угла. Затем устанавливаем циркулем длину отрезка АВ и на биссектрисе откладываем от вершины это расстояние. Получим точку, которая лежит на биссектрисе угла и находится от вершины на расстоянии 4 см
4,4(51 оценок)
Это интересно:
Новые ответы от MOGZ: Другие предметы
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ