И амеба и инфузория туфелька имеют сократительную и пищеварительную вакуоли. Амеба обыкновенная не имеет постоянной формы тела. Она способна образовывать ложноножки, с помощью которых питается и передвигается. Дыхание и выделение происходит через всю поверхность тела. Размножение только бесполое — путем деления клетки надвое. Тело инфузории туфельки покрыто сложноустроенной оболочкой с большим количеством ресничек, имеются клеточный рот и клеточная глотка. Характерно наличие двух ядер разной формы и размеров, чего нет у амебы. Бесполое размножение — поперечное деление клетки надвое; половой процесс — конъюгация.
Решение.
Исходя из свойств правильной пирамиды, каждая из ее сторон является равнобедренным треугольником.
Таким образом, площадь боковой поверхности правильной пирамиды будет равна сумме площадей каждой из граней, являющихся равнобедренными треугольниками.
Площадь равнобедренного треугольника найдем по формуле (Формула 1 из списка):
Формулы нахождения площади равнобедренного треугольника через его стороны и углы, а также через основание и высоту
Подставив значения из условия задачи в Формулу 1, получим:
S = 5 √ ( (13 + 5) (13 - 5) )
S = 5 √ 144 = 60
Поскольку граней у пирамиды четыре, то площадь боковой поверхности будет равна сумме всех четырех граней:
60 * 4 = 240 см2
Правильная четырехугольная пирамида
Так как по условию задачи, пирамида является правильной, то в основании ее лежит правильный многоугольник. Так как, согласно условию, она является четырехугольной, то данным многоугольником является квадрат.
Поскольку основанием пирамиды является квадрат, то:
KN = 10/2 = 5 см
Поскольку каждая грань правильной пирамиды представляет собой равнобедренный треугольник, а в равнобедренном треугольнике медиана, биссектриса и высота, проведенные к третьей стороне совпадают, то
CN = 10/2 = 5
Теперь найдем апофему пирамиды, исходя из свойств прямоугольного треугольника, образованного апофемой пирамиды, ребром и половиной основания (треугольником OCN).
ON2 + CN2 = OC2
ON2 + 25 = 169
ON2 = 144
ON = 12
Откуда уже несложно найти искомую высоту, исходя из свойств прямоугольного треугольника, образованного высотой пирамиды, ее апофемой и отрезком KN (треугольник ONK)