М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Read and choose the correct word to complete gaps 1-5. Listen and check А сап В is С has А there В these С they А having в have с has

👇
Ответ:
Kniga4001
Kniga4001
20.04.2020

Read and choose the correct word to complete gaps

Ответы: 1 B, 2 A, 3 C, 4 A, 5 C

4,6(6 оценок)
Открыть все ответы
Ответ:
diiann
diiann
20.04.2020

всё

Объяснение:

Вариант 1:

1. (xVy)↔(y↓⌐x),

(x│⌐y)→(z+⌐(xy));

2. x→(y+z),

(x→y)+(x→z);

3. (xV⌐y)→(⌐z+⌐x);

4. f(0,1,0)=f(1,0,0)=f(1,0,1)=0;

5. f=(1101 1101 0011 0011);

6. J={xVy, ⌐x+y}.

Вариант 2:

1. (x↔⌐y)V(y↓x),

((x→⌐y)│⌐z)+⌐(xy);

2. x│(y→z),

(x│y)→(x│z);

3. ⌐((xV⌐y)→(z+⌐x));

4. f(0,1,1)=f(1,0,0)=f(1,1,0)=0;

5. f=(1111 1100 1011 1011);

6. J={x→y, ⌐x⌐y}.

Вариант 3:

1. (xV⌐y)↔(y↓x),

((x│⌐y)→z)+⌐(xy);

2. x(y+z),

xy+xz;

3. (⌐xV⌐y)→ ⌐(z+x);

4. f(0,0,0)=f(0,0,1)=f(1,0,1)=f(1,1,1)=1;

5. f=(1110 0101 0011 0101);

6. J={x↔y, ⌐x│⌐y}.

Вариант 4:

1. (x↔⌐y)V(y↓x),

((x→⌐y)│⌐z)+⌐(xy);

2. x(y+z),

xy+xz;

3. (xV⌐y)→ ⌐(z↔⌐x);

4. f(0,0,1)=f(1,1,1)=f(1,1,0)=0;

5. f=(1101 0011 1101 0011);

6. J={x+y, ⌐xVy}.

Вариант 5:

1. (xV⌐y)→(y+x),

((x↔⌐y)│⌐z)↓⌐(xy);

2. x(y→z),

xy→xz;

3. ⌐((xV⌐y)→(z↔⌐x));

4. f(0,0,0)=f(1,1,1)=f(1,1,0)=0;

5. f=(1100 1011 1111 1011);

6. J={⌐x→y, x⌐y}.

Вариант 6:

1. (x+⌐y)↔(y│x),

((x↓y)↔⌐z)V⌐(xy);

2. x(y↔z),

xy↔xz;

3. ⌐((x│⌐y)+(z→⌐x));

4. f(0,0,1)=f(0,1,1)=f(1,1,0)=f(1,1,1)=1;

5. f=(0101 0101 1110 0011);

6. J={⌐x↔y, x│⌐y}.

Вариант 7:

1. (xV⌐y)↓(y→x),

((x│⌐y)↔⌐z)+⌐(xy);

2. x(y│z),

xy│xz;

3. ⌐((z→x)↔(y│x));

4. f(0,0,0)=f(1,0,1)=f(1,1,1)=0;

5. f=(0011 0011 1101 1101);

6. J={x+⌐y, ⌐xVy}.

Вариант 8:

1. (x+⌐y)→(y↓x),

((x│⌐y)V⌐z)↔⌐(xy);

2. xV(y→z),

(xVy)→(xVz);

3. (x│⌐y)+(⌐z→x);

4. f(1,0,1)=f(0,1,0)=f(1,1,1)=0;

5. f=(1011 1011 1100 1111);

6. J={x→⌐y, ⌐xy}.

Вариант 9:

1. ⌐x↔(y→(⌐y↓x)),

((⌐x│y)V⌐z)+⌐(xy);

2. xV(y│z),

(xVy)│(xVz);

3. (⌐z→x)↔(⌐x│y);

4. f(1,0,0)=f(1,1,0)=f(0,1,1)=f(0,1,0)=1;

5. f=(0101 0011 0101 1110);

6. J={x↔⌐y, ⌐x│y}.

Вариант 10:

1. x↓(⌐y→(y↓x)),

x+(⌐yV⌐z↔⌐(xy));

2. xV(y↔z),

(xVy)↔(xVz);

3. (z→x)+(x│⌐y);

4. f(0,1,1)=f(1,0,0)=f(1,0,1)=0;

5. f=(0011 1101 0011 1100);

6. J={⌐x+⌐y, xV⌐y}.

Вариант 11:

1. x↔(⌐y→(y+x)),

x│(⌐yV⌐z↓⌐(xy));

2. x+(y↔z),

(x+y)↔(x+z);

3. ((x↓y)→z)+y;

4. f(0,0,1)=f(1,0,0)=f(1,1,0)=0;

5. f=(1011 1111 1011 1100);

6. J={xy, ⌐x→⌐y}.

Вариант 12:

1. x→(⌐y│(y+x)),

x↔(⌐yV⌐z↓⌐(xy));

2. x+(y→z),

(x+y)→(x+z);

3. ⌐((x│y)→z)+y;

4. f(0,0,1)=f(0,1,1)=f(1,1,1)=0;

5. f=(0011 1110 0101 0101);

6. J={x│y, ⌐x↔⌐y}.

Вариант 13:

1. x↓(⌐y→(yVx)),

x│(⌐y↔⌐z+⌐(xy));

2. x+(y│z),

(x+y)│(x+z);

3. ⌐((x↓y)→⌐z)+y);

4. f(0,0,0)=f(0,0,1)=f(1,1,0)=0;

5. f=(0011 0011 1100 1111);

6. J={⌐x+y, ⌐xV⌐y}.

Вариант 14:

1. x+(⌐y→(y↔x)),

x↓(⌐yV⌐z│⌐(xy));

2. x↓(y↔z),

(x↓y)↔(x↓z);

3. (⌐(x↓y)→⌐z)↔y;

4. f(0,0,0)=f(0,1,0)=f(1,1,1)=0;

5. f=(1100 0101 0011 0011);

6. J={xy, x→⌐y}.

Вариант 15:

1. (x↓y)│(yV⌐x),

(x↔⌐y)+(z→⌐(xy));

2. x│(y+z),

(x│y)+(x│z);

3. ⌐(((x↓y)→⌐z)↔y);

4. f(0,0,0)=f(0,0,1)=f(1,0,0)=f(1,1,0)=1;

5. f=(0010 0111 1010 1101);

6. J={xVy, ⌐x↔y}.

Вариант 16:

1. (x│y)→(y+⌐x),

(x⌐y)V(z↔⌐(x↓y));

2. x→(y│z),

(x→y)│(x→z);

3. (⌐(x↓y)→⌐z)+y;

4. f(1,0,1)=f(0,1,1)=f(0,1,0)=0;

5. f=(0011 1111 0011 1100);

6. J={x+y, xV⌐y}.

Вариант 17:

1. (xVy)→(y↓⌐x),

(x│⌐y)↔(z+⌐(xy));

2. x→(y↔z),

(x→y)↔(x→z);

3. ⌐((xVy)→(⌐z↔y));

4. f(1,0,0)=f(0,1,1)=f(0,1,0)=0;

5. f=(0101 0011 1100 0011);

6. J={x⌐y, ⌐x→⌐y}.

Вариант 18:

1. (xVy)↓(y→⌐x),

(x+⌐y)→(z│⌐(xy));

2. xV(y+z),

(xVy)+(xVz);

3. ⌐((x│y)+(⌐z→y));

4. f(0,0,1)=f(0,1,1)=f(1,0,0)=f(1,0,1)=1;

5. f=(0111 1101 0010 1010);

6. J={x↓⌐y, ⌐x↔⌐y}.

Вариант 19:

1. (x+y)│(y↓⌐x),

(x↔⌐y)→(zV⌐(xy));

2. x↓(y+z),

(x↓y)+(x↓z);

3. ⌐(((x↓y)→z)↔x);

4. f(1,0,0)=f(0,0,1)=f(0,1,1)=0;

5. f=(1111 1100 0011 0011);

6. J={x+⌐y, xVy}.

Вариант 20:

1. xy↔(y↓⌐x),

(x→⌐y)│(z+⌐(xVy));

2. x↔(y+z),

(x↔y)+(x↔z);

3. (⌐xVy)→⌐(⌐z↔y);

4. f(0,0,1)=f(0,1,1)=f(1,1,0)=0;

5. f=(0011 0011 0101 1100);

6. J={x→y, ⌐xy}.

Вариант 21:

1. x↓(⌐y+(y→⌐x)),

xV(⌐y│⌐z+⌐(xy));

2. x→(y↓z),

(x→y)↓(x→z);

3. ⌐(((x↔y)│⌐z)+y);

4. f(0,0,0)=f(0,0,1)=f(1,0,0)=f(1,1,0)=0;

5. f=(1110 1001 0111 0001);

6. J={⌐x↓y, ⌐x↔⌐y}.

Вариант 22:

1. x│(⌐y+(yVx)),

x→(⌐y↓(⌐z↔⌐(xy)));

2. x↓(y│z),

(x↓y)│(x↓z);

3. ⌐(x↓y)→(z↔⌐y);

4. f(0,1,1)=f(1,0,0)=f(1,0,1)=1;

5. f=(0001 0011 1100 1110);

6. J={⌐x+⌐y, ⌐xVy}.

Вариант 23:

1. x+(⌐y→(y↔⌐x)),

x↓(⌐y│(zV⌐(xy)));

2. x↔(y│z),

(x↔y)│(x↔z);

3. ⌐(((x↓y)→⌐z)↔y);

4. f(0,0,1)=f(1,0,0)=f(1,1,0)=1;

5. f=(0011 1100 0011 0101);

6. J={⌐x⌐y, ⌐x→y}.

Вариант 24:

1. x↔(y(⌐y→x)), xV(⌐y+(z↓⌐(x│y)));

2. x→(y↓z),

(x→y)↓(x→z);

3. (⌐(x↔y)→⌐z)│y;

4. f(0,1,1)=f(0,1,0)=f(1,0,1)=f(1,1,1)=1;

5. f=(0011 1101 0010 1100);

6. J={xV⌐y, ⌐x↔y}.

4,5(10 оценок)
Ответ:

От самого рождения, начиная с первых дней жизни, человек начинает свое становление как личности. С молоком матери он познает первые звуки, слова, анализирует окружение, в котором развивается. Это становится основополагающим аспектом на пути познания себя в будущем.

Самопознание довольно сложный процесс, окончательный результат которого возложен на нахождение своего предназначения в этом мире, основной цели существования. Чтобы познать себя, нужно проводить аналитическую работу с собой, периодически выявлять свои недостатки и преимущества. Это раскрывать сильные и слабые стороны своего “я” и расти как личность.

Главное в этом задании – не играть никаких ролей, как мы это привыкли делать каждый день в разных ситуациях.

Надо помнить, что невозможно быть кем-то, если ты им не являешься на самом деле, нужно оставаться справедливым хотя бы наедине с собой. Стоит честно ответить на вопрос “Кто я?”, “Чего хочу от жизни?” и, исходя из ответов, двигаться дальше на пути Самопознания.

Если разобрать практические моменты Познания себя, то перед человеком открывается множество горизонтов. Не нужно избегать новых направлений деятельности, а наоборот, как можно больше испытывать себя в разных направлениях.

Возможно, сегодня Вы занимаетесь спортом и возлагаете на это все силы, а завтра кто-то заметит, что у вас прекрасный голос и нужно развивать себя в вокале. Но для этого надо самому заниматься развитием, никто вместо вас этого не сделает. Стоит прислушаться к своему сердцу, оно не подведет. Поиск своего предназначения происходит в долгой и кропотливой работе, непрестанном личном движении в глубине своих возможностей.

Такой путь является истинно правильным и приводит к росту уверенности в своих действиях и в своем будущем. Лишь в бездействии порождается остановка саморазвития и медленная деградация личности.

Объяснение:

4,5(5 оценок)
Это интересно:
Новые ответы от MOGZ: Другие предметы
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ