Функция полезности: задачи с решениями
Задача 1. Функция полезности имеет вид: TU=4xy, где X и Y - количество товаров. Расходы потребителя на эти два товара в месяц равны 1200 р., цена товара X - 400 р., товара Y - 300 р. Определите оптимальный объем ежемесячных закупок двух данных товаров и соответствующее ему значение общей полезности.
Задача 2. Условия: потребитель расходует 200 руб. в неделю на покупку товаров А и В.
Цена (руб.) Кол-во покупаемых единиц товаров Общая полезность Предельная полезность
А 7 20 500 20
В 5 12 1000 30
Задание: Объяснить, как должен поступать потребитель, чтобы максимизировать получаемую полезность при данном бюджете.
Qd(1) = 80 – 2Р
если P = 0, то Q= 80; если Q= 0, то P= 40
0 ≤ P ≤ 40,
0 ≤ Q ≤ 80.
Qd(2) = 240 – 3Р
если P = 0, то Q= 240; если Q= 0, то P= 80
0 ≤ P ≤ 80,
0 ≤ Q ≤ 240.
Спрос на товар предъявляют оба покупателя:
QD = Qd(l) + Qd(2) = (80 - 2Р) + (240 - 3Р) = 320 - 5Р;
При 40 ≤ P ≤ 80, спрос на данный товар предъявляет только первый покупатель QD = Qd(1) = 80 - 2Р.
Таким образом, функция рыночного спроса на товар X имеет вид:
QD = { 240 – 3Р при 40 < Р ≤ 80
{ 320 – 5P при 0 ≤ Р ≤ 40
При Р = 30
QD = 320 - 5Р = 320 - 5 * 30 = 170.