М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
EgorUmelii
EgorUmelii
21.04.2021 06:27 •  Экономика

На одном из предприятий химической промышленности средний возраст рабочих в 2000 г. составил 28 лет в цехе гидролиза и 30 лет в цехе серной кислоты. В 2001 г. средний возраст рабочих по каждому из цехов не уменьшился, а число рабочих в каждом из них увеличилось в 1,1 раза. Что произошло при этих условиях со средним возрастом рабочих по двум цехам вместе в 2001 г.?

👇
Ответ:
иришка276
иришка276
21.04.2021
Для решения данной задачи, нужно сначала вычислить средний возраст рабочих в каждом цехе в 2001 году, а затем найти средний возраст по двум цехам вместе.

Пусть в начале 2000 года в цехе гидролиза работало n_1 рабочих, а в цехе серной кислоты - n_2 рабочих. Тогда вместе в 2000 году работало n_1 + n_2 рабочих.

Средний возраст рабочих в цехе гидролиза в 2000 году составил 28 лет, а в цехе серной кислоты - 30 лет. Обозначим средний возраст в цехе гидролиза в 2001 году как x_1 и в цехе серной кислоты как x_2.

Мы знаем, что средний возраст рабочих по каждому из цехов не уменьшился в 2001 году. Это означает, что x_1 >= 28 и x_2 >= 30.

Также, из условия задачи мы узнали, что число рабочих в каждом из цехов увеличилось в 1,1 раза. Это значит, что количество рабочих в цехе гидролиза в 2001 году составило 1,1 * n_1, а в цехе серной кислоты - 1,1 * n_2.

Теперь, мы можем записать уравнение для среднего возраста рабочих по двум цехам вместе в 2001 году. Это будет среднее арифметическое от среднего возраста по цеху гидролиза и среднего возраста по цеху серной кислоты:

(1.1 * n_1 * x_1 + 1.1 * n_2 * x_2) / (1.1 * n_1 + 1.1 * n_2)

Мы можем упростить это выражение, разделив числитель и знаменатель на 1.1:

(n_1 * x_1 + n_2 * x_2) / (n_1 + n_2)

Теперь, зная, что n_1 + n_2 равно 1,1 * (n_1 + n_2) и 1,1 * n_1 равно n_1 * (1 + 0,1), а 1,1 * n_2 равно n_2 * (1 + 0,1), мы можем дополнительно упростить уравнение:

(n_1 * x_1 + n_2 * x_2) / (1.1 * (n_1 + n_2))

Таким образом, искомое выражение для среднего возраста рабочих по двум цехам вместе в 2001 году:

(n_1 * x_1 + n_2 * x_2) / (1.1 * (n_1 + n_2))

Это и есть ответ на задачу. Однако, чтобы найти точное значение, необходимо знать исходные данные о количестве рабочих в каждом цехе в 2000 году и средний возраст рабочих в 2001 году в каждом цехе.
4,8(40 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Экономика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ