Вроде бы задача представляется проще, чем я сначала подумал. Итак, начинаем рассуждать логически. Будем считать, что H > h. ответ не изменится если будет наоборот - просто можем развернуть дом, или делать бросок с обратной сторон дома. Поэтому такое допущение упростит нам выкладки, но для решения не имеет значения.
Какую вертикальную скорость Vy должен иметь мяч? Не вижу иного варианта ответа на этот вопрос, как такую, чтобы мог взлететь на высоту Н. Этого будет достаточно, более высоко подлетать не требуется. Таким образом, используя стандартную формулу, получим что Vy = корень ( 2 * g * H ).
Далее мяч перелетел через высокую стену дома, и начинает снижаться. Тут зададимся вопросом сколько времени t займёт снижение с высоты Н до высоты h. Опять используем стандартную формулу для равноускоренного движения, и получим H - h = g * t^2 / 2, отсюда t = корень ( 2 * (H-h) / g ).
За это время t мяч должен успеть пролететь расстояние L, чтобы не зацепить на угол крыши. Следовательно, он должен иметь горизонтальную скорость Vx = L / t Vx = L / корень ( 2 * (H-h) / g ).
Внезапно мы получили вертикальную и горизонтальную составляющие скорости. Для ответа на вопрос их нужно просто векторно сложить, т.е. в нашем случае применить теорему Пифагора.
V^2 = Vy^2 + Vy^2 V^2 = 2 * g * H + L^2 * g / (2*(H-h))
По ходу, корень из этого выражения и является ответом на вопрос. Можно для красоты вынести за скобку g, и выходит так: V = корень ( g * ( 2H + L^2 / (2*(H-h
В общем, такая моя версия. Сходится с ответом?
По ходу, легко определяется также и угол броска как а = arctg ( Vy / Vx ).
Расстояние точки броска от стены в такой схеме (т.е. при условии что H > h ) выразится тоже несложно, как S = Vx * Vy / g
Бочка Паскаля. По указанию Паскаля, крепкую дубовую бочку до краев наполнили водой и наглухо закрыли крышкой. В небольшое отверстие в крышке заделали конец вертикальной стеклянной трубки такой длины, что конец ее оказался на уровне второго этажа. Выйдя на балкон, Паскаль принялся наполнять трубку водой. Не успел он вылить и десятка стаканов, как вдруг, к изумлению обступивших бочку зевак, бочка с треском лопнула. Ее разорвала непонятная сила. Паскаль убеждается: да, сила, разорвавшая бочку, вовсе не зависит от количества воды в трубке. Все дело в высоте, до которой трубка была заполнена. Далее проявляется удивительное свойство воды - передавать давление, создаваемое на ее поверхности (в бочке) по всему объему, каждой точке стенки или дна бочки. Так он приходит к открытию закона, получившего его имя.
Какую вертикальную скорость Vy должен иметь мяч? Не вижу иного варианта ответа на этот вопрос, как такую, чтобы мог взлететь на высоту Н. Этого будет достаточно, более высоко подлетать не требуется. Таким образом, используя стандартную формулу, получим что
Vy = корень ( 2 * g * H ).
Далее мяч перелетел через высокую стену дома, и начинает снижаться. Тут зададимся вопросом сколько времени t займёт снижение с высоты Н до высоты h. Опять используем стандартную формулу для равноускоренного движения, и получим
H - h = g * t^2 / 2, отсюда
t = корень ( 2 * (H-h) / g ).
За это время t мяч должен успеть пролететь расстояние L, чтобы не зацепить на угол крыши. Следовательно, он должен иметь горизонтальную скорость Vx = L / t
Vx = L / корень ( 2 * (H-h) / g ).
Внезапно мы получили вертикальную и горизонтальную составляющие скорости. Для ответа на вопрос их нужно просто векторно сложить, т.е. в нашем случае применить теорему Пифагора.
V^2 = Vy^2 + Vy^2
V^2 = 2 * g * H + L^2 * g / (2*(H-h))
По ходу, корень из этого выражения и является ответом на вопрос. Можно для красоты вынести за скобку g, и выходит так:
V = корень ( g * ( 2H + L^2 / (2*(H-h
В общем, такая моя версия. Сходится с ответом?
По ходу, легко определяется также и угол броска как
а = arctg ( Vy / Vx ).
Расстояние точки броска от стены в такой схеме (т.е. при условии что H > h ) выразится тоже несложно, как
S = Vx * Vy / g