Модуль швидкості матеріальної точки змінюється з часом за законом u=at(у квадраті), де a=11 м/с(у квадраті). необхідно знайти шлях пройдений точкою за перші 3с руху.
S - расстояние между столбами v - первоначальная скорость велосипедиста Δv - увеличение скорости велосипедиста t₁ = 6c - время проезда между столбами при скорости v t₂ = 4c - время проезда между столбами при скорости v + Δv t₃ - время проезда между столбами при скорости v + 2Δv
S = vt₁ S = (v + Δv)t₂ S = (v + 2Δv)t₃
Приравниваем первые два : vt₁ = (v + Δv)t₂ 6v = 4(v + Δv) (v + Δv) / v = 1,5 1 + Δv/v = 1,5 Δv/v = 0,5 (т.е. первый раз скорость увеличилась на 50%)
Теперь приравниваем первое и третье выражение, зная, что Δv/v = 0,5 vt₁ = (v + 2Δv)t₃ t₁/t₃ = (v + 2Δv) / v t₁/t₃ = 1 + 2Δv/v = 1 + 1 = 2 t₃ = t₁/2 Таким образом, если велосипедист увеличит скорость еще на такую же величину, то скорость в итоге увеличится в 2 раза, а время проезда между столбами по сравнению с первоначальным временем уменьшится в 2 раза и составит 3 секунды
Вариант 1 1)А. по рассеянию α-частиц 2)Г. электромагнитные волны большой частоты 3) Б. 7 электронов 4)82 протона, 132 нейтрона 5) А. 6)а 7) Б. уменьшается на 2 единицы 8) Г. не изменяется
v - первоначальная скорость велосипедиста
Δv - увеличение скорости велосипедиста
t₁ = 6c - время проезда между столбами при скорости v
t₂ = 4c - время проезда между столбами при скорости v + Δv
t₃ - время проезда между столбами при скорости v + 2Δv
S = vt₁
S = (v + Δv)t₂
S = (v + 2Δv)t₃
Приравниваем первые два : vt₁ = (v + Δv)t₂
6v = 4(v + Δv)
(v + Δv) / v = 1,5
1 + Δv/v = 1,5
Δv/v = 0,5 (т.е. первый раз скорость увеличилась на 50%)
Теперь приравниваем первое и третье выражение,
зная, что Δv/v = 0,5
vt₁ = (v + 2Δv)t₃
t₁/t₃ = (v + 2Δv) / v
t₁/t₃ = 1 + 2Δv/v = 1 + 1 = 2
t₃ = t₁/2
Таким образом, если велосипедист увеличит скорость еще на такую же величину, то скорость в итоге увеличится в 2 раза, а время проезда между столбами по сравнению с первоначальным временем уменьшится в 2 раза и составит 3 секунды