1. Пусть расстояние между пунктами А и В равно L. Вычислим время полета в случае, когда ветер дует вдоль линии АВ. При движении из А в В скорость самолета относительно земли равна v + u, а при движении из В в А скорость равна v - u. Следовательно, полное время полета:t1 = L / ( v + u ) + L / ( v - u ) = 2Lv / ( v2 - u2 )рис. 1Пусть теперь ветер дует перпендикулярно линии АВ. Чтобы самолет двигался по этой прямой, векторная сумма скоростей ветра и самолета (относительно воздуха) должна быть направлена параллельно АВ (рис. 1). Но тогда видно, что при таком движении скорость самолета относительно земли:v0 = ( v2 - u2 )½Значит полное время перемещения составляет:t2 = 2L / ( v2 - u2 )½Видно, что t1 > t2, причем:t1 / t2 = v / ( v2 - u2 )½ответ: во втором случае в v / ( v2 - u2 )½ раз.
Для решения этой задачи недостаточно данных, поэтому я просто возьму их за известные константы и ;
Дано: h; Найти: H; Решение: Пусть толщина льдины H, выступающая часть h, тогда скрытая часть h0; Если предположить, что льдина в течении некоторого времени тает незначительно и её объём постоянен, получаем из условия равновесия: , где S - площадь льдины Отсюда h0 Так как H - толщина льдины (H = h + h0), получаем: -- ответ, чтобы получить число, нужно посмотреть в таблицах значения p0 (плотность льда) и p (плотность воды) и подставить их в формулу.
Объяснение:
R45=R4+R5=10+10=20 Ом
R245=R2*R45/(R2+R45)=10*20/(10+20)=6.67 Ом
R2345=R245+R3=6.67+10=16.67 Ом
Rоб=R1*R2345/(R1+R2345)=10*16.67/(10+16.67)=6.25 Ом