Пе́рша космі́чна шви́дкість — швидкість, яку, нехтуючи опором повітря та обертанням планети, необхідно надати тілу, для переміщення його на кругову орбіту, радіус якої рівний радіусу планети.
Поняття першої космічної швидкості є досить теоретичним, оскільки реальні кораблі мають свій власний двигун і крім того, використовують обертання Землі.
Для обчислення першої космічної швидкості необхідно розглянути рівність відцентрової сили та сили тяжіння, що діють на тіло на орбіті.
{\displaystyle m{\frac {v_{1}^{2}}{R}}=G{\frac {Mm}{R^{2}}};}{\displaystyle m{\frac {v_{1}^{2}}{R}}=G{\frac {Mm}{R^{2}}};}
{\displaystyle v_{1}={\sqrt {G{\frac {M}{R;}{\displaystyle v_{1}={\sqrt {G{\frac {M}{R;}
Де m — маса снаряду, M — маса планети, G — гравітаційна стала (6,67259•10−11 м³•кг−1•с−2), {\displaystyle v_{1}\,\!}{\displaystyle v_{1}\,\!}— перша космічна швидкість, R — радіус планети.
Першу космічну швидкість можна визначити через прискорення вільного падіння — оскільки g = GM/R2, то
{\displaystyle v_{1}={\sqrt {gR}};}{\displaystyle v_{1}={\sqrt {gR}};}.
Першою космічною швидкістю VI називають швидкість польоту по коловій орбіті радіуса, що дорівнює радіусу земної кулі Rз.
Записавши для такого колового руху другий закон Ньютона отримаємо: VI = (gRз)1/2 ≈ 7,9 км/с
1. чем больше сопротивление проводника, тем больше тепла выделяется при прохождении электрического тока по проводнику, то есть количество теплоты, которое выделяется в проводнике при прохождении по нему электрического тока, прямо пропорционально сопротивлению проводника;
2. количество теплоты, выделяемое в проводнике при прохождении по нему электрического тока, зависит от силы тока (чем больше сила тока, тем большее количество свободных частиц проходит через сечение проводника в единицу времени, происходит больше столкновений, следовательно, больше энергии передаётся частицам проводника).
Можно подтвердить данные предположения с опытов.
Соберём электрическую цепь, в которой последовательно с источником тока подключены два нагревателя с разными сопротивлениями, которые опущены в калориметры (прибор для измерения количества теплоты) с одинаковым количеством воды при одинаковой температуре. При прохождении электрического тока через нагреватели будет наблюдаться повышение температуры воды, причём вода будет нагреваться быстрее в том калориметре, в который помещён нагреватель с бльшим сопротивлением (см. Рис. 1). То есть подтверждается предположение 1.
Для подтверждения предположения 2 соберём электрическую цепь, в которой последовательно к источнику тока подключен амперметр, лампочка накаливания и реостат. Регулируя сопротивление реостата, меняем силу тока в цепи при постоянном напряжении. При увеличении силы тока увеличивается яркость лампочки (см. Рис. 2), то есть увеличивается количество теплоты, которое выделяет нить накаливания.
Рис. 1. Нагреватель с бльшим сопротивлением нагревает воду быстрее
Увеличение яркости лампочки при увеличении силы тока
Рис. 2. Увеличение яркости лампочки при увеличении силы тока
Закон Джоуля-Ленца
Тепловое действие тока опытным путём независимо друг от друга изучали английский учёный Джоуль и русский учёный Ленц. Они пришли к выводу, который впоследствии назвали закон Джоуля – Ленца: количество теплоты, выделяющееся при прохождении тока в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока:
,
где – количество теплоты, I – сила тока, R – сопротивление проводника, t – время прохождения тока.
Закон Джоуля – Ленца был получен экспериментально, но так как мы знаем формулу для работы электрического тока (), то сможем вывести его с несложных математических вычислений. Если на участке цепи, в котором течёт электрический ток, не выполняется механическая работа и не происходят химические реакции, то результатом работы электрического тока будет нагревание проводника. В результате этого нагревания проводник будет отдавать тепло окружающим телам. Следовательно, в данном случае, согласно закону сохранения энергии, количество выделенной теплоты () будет равно работе тока (A). Зная формулу для работы тока и напряжения, получим следующие преобразования:
Если сила тока неизвестна, а известно напряжение на концах участка цепи, то, воспользовавшись законом Ома, получаем:
Формулы и можно использовать только тогда, когда вся работа электрического тока расходуется только на нагревание. Если на участке цепи есть потребители энергии, в которых выполняется механическая работа или происходят химические реакции, эти формулы использовать нельзя (в таких случаях применяются сложные математические расчёты).
ответ:
дано
m=1000кг
v1=15м/с
v2=5м/с найти m(v2-v1)=1000(5-15)=1 кг*м/с
2 дано
m=1.5кг
t1=3c
t2=5c
mv-? x=5-2t+t^2; x=x0+v0t+at^2/2; отсюда v0=-2м/с t^2=at^2/2 a=2
v3=v0+at1 v3= -2+2*3=4м/с mv3=1.5*4=6кг*м/с
v5=v0+at2 v5=-2+2*5=8м/с mv5=1.5*8=12кг*м/с
3 дано
m=0.1кг
v1=6м/с
m2=0.4кг
v2=1м/с
m=m1+m2
u-? т к шары движутся в одну сторону следует m1v1+m2v2=(m1+m2)u
u= (m1v1+m2v2)/(m1+m2) u=(0.1*6+0.4*1)/0.5=2 м/с