he⁴₂; np=2- количество протонов в ядре; nn=4-2=2- количество нейтронов в ядре.
из справочника:
mp(масса протона)=1.007276 а.е.м(атомная единица массы)
mn(масса нейтрона)=1.008665 а.е.м
mя(масса ядра)=4.0026 а.е.м.
eсв=δm*c²; δm-дефект массы; c-скорость света в вакууме(3*10⁸ м/с);
δm=(np*mp+nn*mn)-mя;
δm=(2*1.007276+2*1.008665)-4.0026=0.029282 а.е.м
1 а.е.м=1.66*10⁻²⁷ кг; δm=0.029282*1.66*10⁻²⁷=4.860812*10⁻²⁹ кг;
eсв=4.860812*10⁻²⁹ *(3*10⁸)²=4.37473*10⁻¹² дж - энергия связи ядра he;
eсв=4.37473*10⁻¹² дж/(1.6*10⁻¹⁹ кл)=27,3*10⁶ эв=27.3 мэв
ответ: eсв=27.3 мэв
подробнее - на -
Вообще-то к физике задача имеет отдалённое отношение, это чистая алгебра ;-)
Очевидно, что плановое время прибытия рассчитывалось исходя из первоначальной скорости u1.
Общее расстояние от Ясной поляны до Владимира равно сумме трёх расстояний: которое автобусы проехали до дождя, во время дождя и после дождя, т. е. оно равно
L = u1•t1 + u2•t2 + s (км).
Плановое время прибытия, соответственно, равно L/u1. А фактическое время равно T = t1 + t2 + s/u3. По условию эти времена равны:
(1) (u1•t1 + u2•t2 + 40)/u1 = t1 + t2 + s/u3,
откуда сразу видно, что средняя скорость, равная, по определнию, L/T, равна u1 — это ответ на второй вопрос задачи. (Если вдуматься, это можно было записать и сразу как условие прибытия автобусов вовремя.)
Решаем уравнение (1):
t1 + t2•(u2/u1) + s/u1 = t1 + t2 + s/u3
После несложных преобразований получаем, что время, пока шёл дождь, составило
t2 = (s/u3)•(u3−u1)/(u1−u2),
или, подставляя численные значения:
t2 = (40/75)•(75−70)/(70−60) = 4/15 (ч) = 16 мин.
ОТВЕТ: дождь шёл 16 минут; средняя скорость равна первоначальной скорости u1 = 70 км/ч.