И амперметр и вольтметр подключаются в цепь постоянного тока по принципу "плюс - к плюсу, минус - к минусу". То есть контакт амперметра, обозначенный знаком + подключается к положительному полюсу источника питания.
Схема - на рисунке.
По поводу использования. В общем-то, второй амперметр абсолютно избыточен. Как вариант - освещение помещения с возможностью контроля силы тока из двух независимых мест. Например, достаточно протяженная теплица. Правда, в этом случае лампочек придется добавить, да и источник питания поменять на что-то более основательное..)) Ничем другим наличие второго амперметра объяснить не представляется возможным.
P.S. Вот, кстати, о лампочках..)) Если в параллель к существующей лампочке добавить еще несколько таких же по мощности для действительного освещения протяженного объекта, то по показаниям амперметра можно будет сразу определить, сколько лампочек работает..))
Для начала выведем формулу зависимости L от коэффициента трения μ.
На высоте Н тело имеет потенциальную энергию Еп=mgH и тратит ее на работу против силы трения.
Eп=А
У нас два участка, но которых сила трения разная. Найдем ее на каждом участке, вычислим работу и сложим работы на каждом участке.
А=А₁+А₂.
Сила тяжести Fт=mg
Сила реакции опоры на втором (горизонтальном) участке N₂=Fт.
Сила трения Fтр₂=μN₂
А₂=Fтр₂*L=μmgL
С первым участком сложнее.
Сила реакции опоры N₁= Fт*cos45, сила трения Fтр₁=μN₁
Путь, который проходит тело по наклонной плоскости s=H/sin45
A₁=Fтр₁*s=μmgcos45*H/sin45=μmgHctg45
Собираем все вместе в одну формулу
mgH=μmgHctg45+μmgL
H=μHctg45+μL
L=H/μ - Hctg45
ctg45=1
L=H/μ - H
При μ₁=0,25 будет расстояние L₁
При μ₂=0,2 расстояние