Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. Занимаясь исследованием Солнца, Гершель искал уменьшения нагрева инструмента, с которого велись наблюдения. Определяя с термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.
Раньше лабораторными источниками инфракрасного излучения служили исключительно раскалённые тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами — детекторами, чувствительными к нагреву инфракрасным излучением[5].
ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решётки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте[5].
Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов[5].
Объяснение:
Объём твёрдого тела при нагревании
Проведём опыт. Возьмём медный шарик, который в ненагретом состоянии проходит сквозь кольцо.
Если шарик нагреть, то он расширится и сквозь кольцо не пройдёт. Через некоторое время шарик остынет, уменьшится в объёме и снова пройдёт сквозь кольцо
Объём жидкости при нагревании
В колбу нальём доверху воду и плотно закроем. Сквозь пробку пропустим стеклянную трубочку.
Вода частично заполнит трубку. Отметим уровень жидкости в трубке.
Нагревая колбу, заметим, что уровень воды в трубке будет подниматься
При нагревании объём увеличивается, а при охлаждении — уменьшается.
Опыты подтверждают гипотезу о том, что все вещества состоят из отдельных частичек — молекул, которые удаляются друг от друга при нагревании, и объём увеличивается, а когда частицы сближаются — объём уменьшается.