Медная пуля пробивает деревянную стену. До прохождения стены скорость пули составляла 320м/с, а после 220м/с. На сколько градусов нагрелась пуля, если на её нагревание пошло 80% выделившегося количества теплоты?
До удара о стену пуля обладала кинетической энергией Ек1. После удара часть энергии пули перешла во внутреннюю и пошла на нагревание, то есть превратилась в теплоту Q, а часть осталась кинетической энергией как Ек2 (т. к. пуля продолжила двигаться). По закону сохранения энергии:
Ек1 = Ек2 + Q, где Q — выделевшееся количество теплоты.
Тогда Q = Eк1 - Ек2 = (m*v²)/2 - (m*v²)/2, где m — масса пули, v — скорость пули
Q=(m*320²)/2 - (m*220²)/2 = 51 200*m - 24 200*m = 27 000*m (не можем подставить массу пули, т. к. она нам не дана)
В условии сказано, что на нагревание пули пошло только 80% выделившейся теплоты, а именно
Q(нагревания) = Q*0,8 = 21 600*m
Известно, что
Q(нагревания) = c*m*ΔT, где с — удельная теплоёмкость материала, m — масса, ΔT — искомое изменение температуры.
Выразим из этой формулы изменение температуры:
ΔT = Q(нагревания)/(с*m) = 21 600*m/c*m = 21 600/c (при делении масса сократилась)
Из специальной таблицы найдём, что уделтная теплоёмкость меди с равна 400 (Дж/(кг*°С). Подставив это значение в формулу, получим
1. Тележка массой 200 г движется равномерно по горизонтальной поверхности стола со скоростью 2 м/с. Чему равен ее импульс?
p=mv=0,4 кг∙м/с.
А. 0,4 кг∙м/с.
2. Два корабля с одинаковыми массами m1=m2 движутся со скоростями v и 3v относительно берега. Определите импульс второго корабля в системе отсчета, связанной с первым кораблем, если корабли идут параллельными курсами в одном направлении.
p=m2*(v2-v1) = m(3v-v)=2mv Б. 2.
3. Пуля массой 10 г пробивает стену. Скорость пули при этом уменьшилась от 800 до 400 м/с. Найдите изменение импульса пули.
p=m*(v2-v1)=0,01*(400-800)=-4 кг∙м/с А. 4 кг∙м/с.
4. С лодки массой 200 кг, движущейся со скоростью 1 м/с, выпал груз массой 100 кг. Какой стала скорость лодки?
если выпал, а не выкинули, то скорость не изменилась
v=1 м/с. А. 1 м/с.
5. Шарик массой m движется со скоростью v и сталкивается с таким же неподвижным шариком. Считая удар абсолютно упругим, определите скорости шариков после столкновения.
у первого станет 0 у второго станет v
II вариант.
1. Мяч массой 500 г летит со скоростью 5 м/с. Чему равен импульс мяча?
p=mv=2,5 кг∙м/с.
Б. 2,5 кг∙м/с.
2. Два корабля с одинаковыми массами m1=m2 движутся со скоростями v и 3v относительно берега. Определите импульс второго корабля в системе отсчета, связанной с первым кораблем, если корабли идут параллельными курсами в противоположных направлениях.
p=m2*(v2-(-v1))=m*(3v+v)=4mv В. 4.
3. Мяч массой 300 г движется с постоянной скоростью 2 м/с и ударяется о стенку, после чего движется обратно с такой же по модулю скоростью. Определите изменение импульса мяча.
p=m(v2-v1)=0,3*2*2=1,2 А. 1,2 кг∙м/с.
4. Снаряд массой 40 кг, летящий горизонтально со скоростью 400 м/с, попадает в неподвижную платформу с песком массой 10 т и застревает в песке. С какой скоростью стала двигаться платформа?
u=40*400/(40+10000)=1,593625 Б. 1.6 м/с
5. Шарик массой m движется со скоростью v и сталкивается с таким же шариком. Считая удар абсолютно неупругим , определите скорости шариков после столкновения.
1. Тележка массой 200 г движется равномерно по горизонтальной поверхности стола со скоростью 2 м/с. Чему равен ее импульс?
p=mv=0,4 кг∙м/с.
А. 0,4 кг∙м/с.
2. Два корабля с одинаковыми массами m1=m2 движутся со скоростями v и 3v относительно берега. Определите импульс второго корабля в системе отсчета, связанной с первым кораблем, если корабли идут параллельными курсами в одном направлении.
p=m2*(v2-v1) = m(3v-v)=2mv Б. 2.
3. Пуля массой 10 г пробивает стену. Скорость пули при этом уменьшилась от 800 до 400 м/с. Найдите изменение импульса пули.
p=m*(v2-v1)=0,01*(400-800)=-4 кг∙м/с А. 4 кг∙м/с.
4. С лодки массой 200 кг, движущейся со скоростью 1 м/с, выпал груз массой 100 кг. Какой стала скорость лодки?
если выпал, а не выкинули, то скорость не изменилась
v=1 м/с. А. 1 м/с.
5. Шарик массой m движется со скоростью v и сталкивается с таким же неподвижным шариком. Считая удар абсолютно упругим, определите скорости шариков после столкновения.
у первого станет 0 у второго станет v
II вариант.
1. Мяч массой 500 г летит со скоростью 5 м/с. Чему равен импульс мяча?
p=mv=2,5 кг∙м/с.
Б. 2,5 кг∙м/с.
2. Два корабля с одинаковыми массами m1=m2 движутся со скоростями v и 3v относительно берега. Определите импульс второго корабля в системе отсчета, связанной с первым кораблем, если корабли идут параллельными курсами в противоположных направлениях.
p=m2*(v2-(-v1))=m*(3v+v)=4mv В. 4.
3. Мяч массой 300 г движется с постоянной скоростью 2 м/с и ударяется о стенку, после чего движется обратно с такой же по модулю скоростью. Определите изменение импульса мяча.
p=m(v2-v1)=0,3*2*2=1,2 А. 1,2 кг∙м/с.
4. Снаряд массой 40 кг, летящий горизонтально со скоростью 400 м/с, попадает в неподвижную платформу с песком массой 10 т и застревает в песке. С какой скоростью стала двигаться платформа?
u=40*400/(40+10000)=1,593625 Б. 1.6 м/с
5. Шарик массой m движется со скоростью v и сталкивается с таким же шариком. Считая удар абсолютно неупругим , определите скорости шариков после столкновения.
ответ: на 54°С
Объяснение:
До удара о стену пуля обладала кинетической энергией Ек1. После удара часть энергии пули перешла во внутреннюю и пошла на нагревание, то есть превратилась в теплоту Q, а часть осталась кинетической энергией как Ек2 (т. к. пуля продолжила двигаться). По закону сохранения энергии:
Ек1 = Ек2 + Q, где Q — выделевшееся количество теплоты.
Тогда Q = Eк1 - Ек2 = (m*v
²)/2 - (m*v
²)/2, где m — масса пули, v — скорость пули
Q=(m*320²)/2 - (m*220²)/2 = 51 200*m - 24 200*m = 27 000*m (не можем подставить массу пули, т. к. она нам не дана)
В условии сказано, что на нагревание пули пошло только 80% выделившейся теплоты, а именно
Q(нагревания) = Q*0,8 = 21 600*m
Известно, что
Q(нагревания) = c*m*ΔT, где с — удельная теплоёмкость материала, m — масса, ΔT — искомое изменение температуры.
Выразим из этой формулы изменение температуры:
ΔT = Q(нагревания)/(с*m) = 21 600*m/c*m = 21 600/c (при делении масса сократилась)
Из специальной таблицы найдём, что уделтная теплоёмкость меди с равна 400 (Дж/(кг*°С). Подставив это значение в формулу, получим
ΔТ = 21 600/400 = 54 (°С)
ответ: на 54°С