1.Количество теплоты – это энергия, которая передается с теплопередачи.Q=cmΔT.единица измерения - 1 Дж(джоуль)
2.Удельная теплоёмкость — это Энергия, необходимая для нагревания 1 кг вещества на 1 градус. единица измерения - 1Дж/кг*К
3.-хз
4.Плавление вещества переход вещества из твердого состояния в жидкое.Кристаллизация (затвердевание) вещества переход вещества из жидкого состояния в твердое.
5.Температура плавления — температура, при которой твёрдое кристаллическое тело совершает переход в жидкое состояние и наоборот.
6.Потому что теплота расходуется на изменение состояния вещества. Температура снова начинает расти, когда переход в новое состояние закончится.
7-хз
8.Удельная теплота плавления – количество теплоты, которое необходимо сообщить 1 кг вещества, нагретому до температуры плавления, чтобы перевести его из твёрдого состояния в жидкое.9.Явление превращения жидкости в пар
10.Парообразование, происходящее с поверхности жидкости
11.Явление превращения пара в жидкость
12.потому что при испарении вместе с частицами воды выходит внутренняя энергия, и высвобождается тепло
13.1. природы самой жидкости например, ацетон испаряется легче, чем спирт и намного легче, чем вода, то есть чем больше полярность вещества и чем выше температура его кипения, тем медленнее оно испаряется.
2. площади ее свободной поверхности Из тазика воды испаряется лучше, чем из кувшина при одинаковом объеме.
3. темпертуры (горячая вода испаряется быстрее, чем холодная )
4. наличия над ней ветра (пар уносится, не успевая сконденсироваться)
5. от концентрации вещества в окружающей среде: например, в случае воды в сырую дождливую погоду вода испаряется медленнее, чем в сухой и ясный день
Если внешняя периодическая ЭДС является гармонической (т.е. изменяется по синусу или косинусу), то возникающие колебания будут гармоническими.
Вынужденные колебания (установившиеся) происходят с частотой вынуждающей силы, их нельзя возбудить за счет ненулевых начальных условий.
Амплитуда вынужденных колебаний зависит от амплитуды вынуждающей ЭДС, от инерциальных (индуктивность) свойств системы и от соотношения частоты вынуждающей силы и собственной частоты колебаний системы.
Наряду с вынужденными колебаниями в системе при наличии ненулевых начальных условий возникают и собственные колебания, которые при наличии сопротивления будут затухающими. Эти колебания происходят с собственной частотой, их амплитуда зависит от начальных условий.
В системе возникают также сопровождающие колебания, которые при наличии сопротивления также будут затухающими. Эти колебания происходят с собственной частотой, но их амплитуда зависит от параметров внешней ЭДС.
При наличии активного сопротивления все колебания, кроме вынужденных колебаний с течением времени затухнут. Т.е. установившиеся колебания являются вынужденными колебаниями и происходят с частотой вынуждающей силы.
Если частота вынуждающей силы мало отличается от частоты собственных колебаний, а активное сопротивление отсутствует, то наблюдаются биения - колебания, амплитуда которых медленно изменяется с течением времени по гармоническому закону.
При приближении частоты вынуждающей ЭДС к частоте собственных колебаний наблюдается явление резонанса, которое заключается в резком увеличении амплитуды вынужденных колебаний.
Резонансная частота зависит от параметров вынуждающей ЭДС, инерциальных свойств системы (индуктивности), собственной частоты и коэффициента затухания.
При наличии сопротивления амплитуда заряда, силы тока достигает максимального значения при различной частоте вынуждающей силы.
При отсутствии сопротивления в случае резонанса амплитуда колебаний монотонно нарастает со временем.
При наличии активного сопротивления, амплитуда колебаний остается конечной величиной.
При действии на систему периодической негармонической ЭДС, резонанс возможен, если период возмущающей силы равен или кратен периоду колебаний системы.
Для силы тока резонанс наступает на собственной частоте $\omega _{0}$ не зависимо от величины затухания.