ответ:решай по этой задаче
Человек, рост которого составляет 179 см, стоит под фонарём. Его тень при этом составляет 161 см. Если он отойдёт от фонаря ещё на 0,1 м, то его тень станет равна 181 см. На какой высоте над землёй висит фонарь?
Объяснение:
Дано: H = 179, S1 = 161, S2 = 181
Обозначим: Y - высота фонаря, X1, X2 = X1 + 10 - расстояния до фонаря (все меряем в сантиметрах). Тогда из подобия треугольников
Y/H = (X1+S1)/S1 = (X2+S2)/S2 = (X1+10+S2)/S2.
Решаем эту систему относительно X1,Y (потом X1 выбрасываем). Для Y получаем формулу
Y = H * (S2 - S1 + 10) / (S2 - S1) = 179*30/20 = 268.5
Округляем до точности исходных данных.
ответ: 2 м 69 см
N - мощность горелки,
t - искомое время,
Q - затраченное количество теплоты.
Разберемся поэтапно с Q.
На что наша горелка будет затрачивать энергию?
- плавление льда: λ m(л)
- нагрев образовавшейся воды до температуры кипения от начальной - нуля: c m(л) (100 - 0) = 100 c m(л)
- нагрев воды, которая уже находилась в сосуде: c m(в) (100 - 0) = 100 с m(в)
Таким образом, Q = λ m(л) + 100 c m(л) + 100 с m(в).
Запишем найденную формулу Q в формулу мощности:
N = ( λ m(л) + 100 c m(л) + 100 с m(в) ) / t,
откуда искомое время t:
t = ( λ m(л) + 100 c m(л) + 100 с m(в) ) / N.
Упростим выражение (выносим сотню и удельную теплоемкость воды за скобки):
t = ( λ m(л) + 100 c (m(л) + m(в)) ) / N,
t = ( 335*10^3 * 35*10^-2 + 10^2 * 42*10^2 * 9*10^-1) / 1,5*10^3,
t = (117250 + 378000) / 1,5*10^3,
t = (117,25 + 378) / 1,5 ≈ 330,16 c ≈ 5,5 мин