1850 Дж / (кг*К)
Объяснение:
1)
Для гелия:
ν₁ = m₁ / M₁
Отсюда
m₁ = ν₁*M₁ = 2*4*10⁻³ = 8*10⁻³ кг
Для кислорода:
ν₂ = m₂ / M₂
Отсюда
m₂ = ν₂*M₂ = 3*16*10⁻³ = 48*10⁻³ кг
Суммарная масса смеси:
m = m₁ + m₂ = (8+48)*10⁻³ = 56*10⁻³ кг
2)
Находим массовые доли газов:
ω₁ = m₁ / m = 8*10⁻³ / 56*10⁻³ ≈ 0,14
ω₂ = m₂ / m = 48*10⁻³ / 56*10⁻³ ≈ 0,86
3)
Удельная теплоемкость гелия (число степеней свободы двухатомного газа i = 3)
cp₁ = ((i+2)/2)*R/M = ((3+2)/2)*8,31 / 4*10⁻³ ≈ 5 200 Дж / (кг*К)
Для кислорода:
cp₂ = ((i+2)/2)*R/M = ((3+2)/2)*8,31 / 16*10⁻³ ≈ 1 300 Дж / (кг*К)
4)
Для смеси:
cp = cp₁*ω₁ + cp₂*ω₂ = 5200*0,14 + 1300*0,86 ≈ 1 850 Дж/(кг*К)
1.Найдите:
А) Амплитуду колебаний заряда.
В общем виде уравнение колебаний заряда q=qm*cos(ωt). Cопоставляя получаем qm=5*10^-4 Кл.
Б) Период. ω= 10^3π. Из ω = 2π/T, T=2π/ω=2π/(10^3π)=2*10^-3 c.
В) Частоту. Из υ=1/T, υ=1/(2*10^-3) =0,5*10^3 Гц= 500 Гц.
Г) Циклическую частоту. ω= 10^3π Гц= 3140 Гц.
2. Запишите уравнения зависимости напряжения на конденсаторе от времени:
Из формулы емкости конденсатора С=q/U имеем
u(t) = q(t)/C =
(5*10^-4cos(10^3πt))/(10*10^-12) = 0,5*10^8 cos(10^3πt):
и силы тока в контуре от времени: в общем виде i(t) =q(t) '=Imcos(ωt+π/2) - ток опережает колебания напряжения на конденсаторе на π/2, Im=ω*qm; Im=10^3π*5*10^-4=1,57 A.
Значит i(t) =1,57cos(10^3πt+π/2).