Объяснение:
Высота подъема ракеты:
H₁ = a·t²/2 или
H₁ = 2t² (1)
Координата x снаряда:
x = t·V₀·cos α
Считая x = L = 9 000 м
имеем:
cos α = 9000 / (400·t)
cos α = 9000 / (400·t) = 22,5 / t
sin α = √ (1 - (22,5/t)²) = √ (1 - 500/t²)
Координата Y снаряда:
Y = t·V₀·sinα - gt²/2 = t·400·√ (1 - 500/t²) - 5·t² (2)
Приравняем (2) и (1)
t·400·√ (1 - 500/t²) - 5·t² = 2t²
400·√ (1 - 500/t²) = 7·t
Отсюда: снаряд попадет в ракету через:
t = 25 c
Тогда угол:
cos α =22,5 / t = 22,5/25 = 0,9
α = 25°
с математического маятника
Цель работы:
научиться измерять ускорение свободного падения, используя формулу периода колебаний математического маятника.
Приборы и материалы:
штатив, шарик с прикрепленной к нему нитью, измерительная лента, секундомер (или часы с секундной стрелкой) .
Порядок выполнения работы
1. Подвесьте к штативу шарик на нити длиной 30 см.
2. Измерьте время 10 полных колебаний маятника и вычислите его период колебаний. Результаты измерений и вычисления занесите в таблицу 13.
3. Пользуясь формулой периода колебаний математического маятника T = 2p, вычислите ускорение свободного падения по формуле: g = .
4. Повторите измерения, изменив длину нити маятника.
5. Вычислите относительную и абсолютную погрешность изменения ускорения свободного падения для каждого случая по формулам:
dg = = + ; Dg = g•dg.
Считайте, что погрешность измерения длины равна половине цены деления измерительной ленты, а погрешность измерения времени — цене деления секундомера.
6. Запишите значение ускорения свободного падения в таблицу 13 с учетом погрешности измерений.