Движение тела, брошенного горизонтально или под углом к горизонту.
Движение тела, брошенного горизонтально или под углом к горизонту.
Это движение в плоскости, поэтому для описания движения необходимо 2 координаты.
Считаем, что движение происходит вблизи поверхности Земли, поэтому ускорение тела – ускорение свободного падения (a = g).
Так как мы пренебрегаем сопротивлением воздуха, то ускорение направлено только к поверхности Земли (g) – вдоль вертикальной оси (y), вдоль оси х движение равномерное и прямолинейное.
Движение тела, брошенного горизонтально.
Выразим проекции скорости и координаты через модули векторов.
Для того чтобы получить уравнение траектории, выразим время tиз уравнения координаты x и подставим в уравнение для y:
- между координатами квадратичная зависимость, траектория – парабола!
Движение тела, брошенного под углом к горизонту.
Порядок решения задачи аналогичен предыдущей.
Решим задачу для случая х0=0 и y0=0.
Движение тела, брошенного под углом к горизонту.
Докажем, что траекторией движения и в этом случае будет парабола. Для этого выразим координату Y через X (получим уравнение траектории):
.
Мы получили квадратичную зависимость между координатами. Значит траектория - парабола.
Найдем время полета тела от начальной точки до точки падения. В точке падения координата по вертикальной оси у=0.
Время полета:
Следовательно, для решения этой задачи необходимо решить уравнение
Оно будет иметь решение при t=0 (начало движения) и
Зная время полета, найдем максимальное расстояние, которое пролетит тело:
Дальность полета:
Из этой формулы следует, что:
- максимальная дальность полета будет наблюдаться при бросании тела (при стрельбе, например) под углом 450;
- на одно и то же расстояние можно бросить тело (с одинаковой начальной скоростью) двумя – т.н. навесная и настильная траектории.
Используя то, что парабола – это симметричная кривая, найдем максимальную высоту, которой может достичь тело.
Время, за которое тело долетит до середины, равно:
Время подъема:
Тогда:
Максимальная высота:
Скорость тела в любой момент времени направлена по касательной к траектории движения (параболе) и равна Скорость тела в любой момент времени направлена по касательной к траектории движения (параболе)
Угол, под которым направлен вектор скорости в любой момент времени:
Угол, под которым направлен вектор скорости в любой момент времени
Надо чтобы на расстоянии 10 м тело поднялось с высоты h на высотуH. найдём за какое время тело преодолеет расстояние 10 м. Пусть скорость тела V. Тогда её проекция на ось х будет Vcos30°. это горизонтальная скорость и она не меняется со временем. t0=s/Vcos30° Значит в момент времени t0 тело должно быть не ниже H. В начальный момент времени вертикальная скорость тела была Vsin30° высота тела меняется по закону H(t)=h+V* sin30° *t -gt²/2 H(t0)=h+V* sin30° *t0 -gt0²/2=H V* sin30° *t0 -gt0²/2=H-h подставляем t0=s/Vcos30 V* sin30° *s/(V*cos30°) -g( s/Vcos30 )²/2=H-h s*tg30° -gs²/(2V²cos²30° )=H-h gs²/(2V²cos²30° )= s*tg30+h-H V²=(gs²/2cos²30°)/( s*tg30+h-H)=(10 м/с² *10² м²/2 *(√3/2)²)/(10м *(√3/3)+2м-6м )=(10³м³/с² *4/6)/(5,77м-4м)=377м²/с² V=19,4м/с
Движение тела, брошенного горизонтально или под углом к горизонту.
Движение тела, брошенного горизонтально или под углом к горизонту.
Это движение в плоскости, поэтому для описания движения необходимо 2 координаты.
Считаем, что движение происходит вблизи поверхности Земли, поэтому ускорение тела – ускорение свободного падения (a = g).
Так как мы пренебрегаем сопротивлением воздуха, то ускорение направлено только к поверхности Земли (g) – вдоль вертикальной оси (y), вдоль оси х движение равномерное и прямолинейное.
Движение тела, брошенного горизонтально.
Выразим проекции скорости и координаты через модули векторов.
Для того чтобы получить уравнение траектории, выразим время tиз уравнения координаты x и подставим в уравнение для y:
- между координатами квадратичная зависимость, траектория – парабола!
Движение тела, брошенного под углом к горизонту.
Порядок решения задачи аналогичен предыдущей.
Решим задачу для случая х0=0 и y0=0.
Движение тела, брошенного под углом к горизонту.
Докажем, что траекторией движения и в этом случае будет парабола. Для этого выразим координату Y через X (получим уравнение траектории):
.
Мы получили квадратичную зависимость между координатами. Значит траектория - парабола.
Найдем время полета тела от начальной точки до точки падения. В точке падения координата по вертикальной оси у=0.
Время полета:
Следовательно, для решения этой задачи необходимо решить уравнение
Оно будет иметь решение при t=0 (начало движения) и
Зная время полета, найдем максимальное расстояние, которое пролетит тело:
Дальность полета:
Из этой формулы следует, что:
- максимальная дальность полета будет наблюдаться при бросании тела (при стрельбе, например) под углом 450;
- на одно и то же расстояние можно бросить тело (с одинаковой начальной скоростью) двумя – т.н. навесная и настильная траектории.
Используя то, что парабола – это симметричная кривая, найдем максимальную высоту, которой может достичь тело.
Время, за которое тело долетит до середины, равно:
Время подъема:
Тогда:
Максимальная высота:
Скорость тела в любой момент времени направлена по касательной к траектории движения (параболе) и равна Скорость тела в любой момент времени направлена по касательной к траектории движения (параболе)
Угол, под которым направлен вектор скорости в любой момент времени:
Угол, под которым направлен вектор скорости в любой момент времени