• Механический источник тока — механическая энергия преобразуется в электрическую энергию. К ним относятся: электрофорная машина, динамо-машина, генераторы.
• Тепловой источник тока — внутренняя энергия преобразуется в электрическую энергию.
К ним относится термоэлемент. Две проволоки из разных металлов спаяны с одного края. Затем место спая нагревают, тогда между другими концами этих проволок появится напряжение.
• Световой источник тока — энергия света преобразуется в электрическую энергию. К ним относится фотоэлемент.
При освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.
• Химический источник тока — в результате химических реакций внутренняя энергия преобразуется в электрическую.
К ним относится, например, гальванический элемент.
В цинковый сосуд Ц вставлен угольный стержень У, у которого имеется металлическая крышка М. Стержень помещен в полотняный мешочек, наполненный смесью оксида марганца с углем С. Пространство между цинковым корпусом и смесью оксида марганца с углем заполнено желеобразным раствором соли Р. В результате химической реакции цинк приобретает отрицательный заряд, а угольный стержень — положительный заряд. Между заряженным стержнем и цинковым сосудом возникает электрическое поле. В таком источнике тока уголь является положительным электродом, а цинковый сосуд — отрицательным электродом.
Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания. Они являются одноразовыми. В быту часто используют источники, которые можно подзаряжать многократно. Их называют аккумуляторами.
Простейший аккумулятор состоит из сосуда, наполненного слабым раствором серной кислоты в воде, в который опущены две свинцовые пластины (электроды). Чтобы аккумулятор стал источником тока, его надо зарядить. Аккумуляторы используют в автомобилях, электромобилях, сотовых телефонах, железнодорожных вагонах и даже на искусственных спутниках Земли.
Объяснение: s=107,5 м.
Будем считать движение автобуса при разгоне - равноускоренным, а при торможении - равнозамедленным. Пусть a1 - ускорение автобуса при разгоне и a2 - замедление автобуса при торможении. Так как при разгоне автобус увеличил свою скорость на Δv=18 км/ч=18/3,6=5 м/c за время Δt1=5 с, то a1=Δv/Δt1=5/5=1 м/с². При этом автобус путь s1=a1*(Δt1)²/2=1*25/2=12,5 м. При движении с постоянной скоростью автобус путь s2=(v0+Δv)*25 м, где v0 - начальная скорость автобуса. Так как по условию v0=0, то s2=Δv*25=5*25=75 м. При торможении скорость автобуса v=(v0+Δv)-a2*Δt2, где Δt2 - время торможения. Отсюда v=5-a2*8 м/с. Так как в момент остановки автобуса v=0, то из уравнения 5-8*a2=0 находим a2=5/8=0,625 м/с². При торможении автобус путь s3=(v0+Δv)*Δt2-a2*(Δt2)²/2=5*8-0,625*64/2=20 м. Отсюда полный путь s=s1+s2+s3=12,5+75+20=107,5 .