2. запишем уравнение вращательного движения
mv2/R = GMm/R2, где v - скорость вращения груза, R - радиус планеты, m и M - массы груза и планеты соответственно.
выразим отсюда v
v = √GM/R = √gR, где g - ускорение свободного падения на планете
Добавлено спустя 12 минут
1. представляется, что вал будет раскручивать момент силы тяжести, действующей на груз.
то Ie = mgR, где I - момент инерции вала, равный MR2/2, е - его угловое ускорение.
тогда угловое ускорение е = 2mg/MR.
3)учитывая это, зависимость ф(t) будет равна ф = ф0 + w0t + et2/2
1) груз же будет двигаться с линейным ускорением a = eR
2) тогда сила натяжения нити будет равна T = m(g-a)
4) w1 = et = e*1 = e = 2mg/MR = 40
5) тангенциальное ускорение точек будет равно ускорению груза
а нормальное будет меняться и в любой момент времени будет рассчитываться как w2R
но в решении этой задачи где-то кроется ошибка
Объяснение:
Си́ла тя́жести — сила, действующая на любое физическое тело вблизи поверхности астрономического объекта (планеты, звезды) и складывающаяся из силы гравитационного притяжения этого объекта и центробежной силы инерции, вызванной его суточным вращением[1][2].
Прочие приложенные к телу силы — такие как силы Кориолиса[3][4][5] при движении тела по поверхности планеты и Архимеда при наличии атмосферы или жидкости — в силу тяжести не включаются.
В большинстве практических случаев анализируется сила тяжести вблизи Земли. Для неё величина центробежной силы составляет доли процента от величины гравитационной и иногда игнорируется.
Сила тяжести {\displaystyle {\vec {P}}}{\vec P}, действующая на материальную точку массой {\displaystyle m}m, вычисляется по формуле[6]
{\displaystyle {\vec {P}}=m{\vec {g}}}{\displaystyle {\vec {P}}=m{\vec {g}}},
где {\displaystyle {\vec {g}}}{\vec g} — ускорение свободного падения[7]. Сила тяжести является консервативной[8]. Она сообщает любому телу, независимо от его массы, ускорение {\displaystyle {\vec {g}}}{\vec {g}}[6]. Значение {\displaystyle g}g диктуется параметрами (массой {\displaystyle M}M, размерами, скоростью вращения {\displaystyle \omega }\omega ) планеты или звезды и координатами на её поверхности.
Если в пределах протяжённого тела поле тяжести приблизительно однородно, то равнодействующая сил тяжести, действующих на элементы этого тела, приложена к центру масс тела[9].
Объяснение: