α ≈ 2°, T ≈ 4,9 мН
Объяснение:
Дано:
σ = 30 мкКл/м² = 3·10⁻⁵ Кл/м²
m = 0,5 г = 5·10⁻⁴ кг
q = 0,1 нКл = 10⁻¹⁰ Кл
g = 9,8 м/с²
ε₀ = 8,85·10⁻¹² Ф/м
Найти: T, α.
Напряжённость электрического поля бесконечной плоскости:
E = σ/(2ε₀).
Сила электростатического отталкивания между плоскостью и шариком:
F = q·E = q·σ/(2ε₀) = qσ/(2ε₀)
Согласно второму закону Ньютона:
х: F - T·sin α = 0
y: T·cos α - mg = 0
T·sin α = F (1)
T·cos α = mg (2)
Найдём угол α. Для этого поделим (1) на (2): tg α = F/mg.
α = arc tg F/mg = arc tg (qσ/(2ε₀))/mg = arc tg qσ/(2ε₀mg) =
arc tg 10⁻¹⁰·3·10⁻⁵/(2·8,85·10⁻¹²·5·10⁻⁴·9,8) = arc tg 10⁻¹⁰·3·10⁻⁵/(2·8,85·10⁻¹²·5·10⁻⁴·9,8) = arc tg 3/(8,85·9,8) ≈ 2°
Найдём силу натяжения нити T из (2): T = mg/cos α =
5·10⁻⁴·9,8/cos 2° ≈ 4,9·10⁻³ Н = 4,9 мН.
Теория:
Ускорение свободного падения характеризует то, как быстро будет увеличиваться скорость тела при свободном падении. Свободным падением называется ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести. Из физики известно, что ускорение свободного падения на Земле составляет 9,8 мс2.
Вопрос, почему эта величина именно такая, мы рассмотрим в этой теме.
Ускорение свободного падения в упрощённом виде можно рассчитать по формуле g=Fm, которая получается из формулы F=m⋅g, где F — сила тяжести либо вес тела в состоянии покоя или равномерного прямолинейного движения, m — масса тела, которое притягивает планета, g — ускорение свободного падения.
Сила тяжести, действующая на тело, зависит от массы тела, массы планеты, притягивающей тело, и от расстояния, на котором находится тело от центра массы планеты.
F=G⋅m1⋅m2R2, где
F — сила тяжести, Н;
G — гравитационная постоянная, G=6,6720⋅10−11Н⋅м2кг2;
R — расстояние между центрами планеты и объекта в метрах. Если притягиваемое тело находится на поверхности планеты, тогда R равен радиусу планеты (если планета имеет сферическую форму);
m1 и m2 — масса планеты и притягиваемого тела, выраженные в кг.