М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lolkek87
lolkek87
22.05.2021 01:02 •  Физика

ЧЕМУ РАВНА МАКСИМАЛЬНАЯ ЭНЕРГИЯ ИЗУЧЕННОГО КВАНТА СВЕТА

👇
Ответ:
igordyatenko
igordyatenko
22.05.2021

определяющий энергию волны, — это ее амплитуда (точнее, квадрат амплитуды). В случае света амплитуда определяет интенсивность излучения. Однако при изучении явления фотоэффекта — выбивания светом электронов из металла — обнаружилось, что энергия выбитых электронов не связана с интенсивностью (амплитудой) излучения, а зависит только от его частоты. Даже слабый голубой свет выбивает электроны из металла, а самый мощный желтый прожектор не может выбить из того же металла ни одного электрона. Интенсивность определяет, сколько будет выбито электронов, — но только если частота превышает некоторый порог. Оказалось, что энергия в электромагнитной волне раздроблена на порции, получившие название квантов. Энергия кванта электромагнитного излучения фиксирована и равна

E = hν,

где h = 4·10–15 эВ·с = 6·10–34 Дж·с — постоянная Планка, еще одна фундаментальная физическая величина, определяющая свойства нашего мира. С отдельным электроном при фотоэффекте взаимодействует отдельный квант, и если его энергии недостаточно, он не может выбить электрон из металла. Давний спор о природе света — волны это или поток частиц — разрешился в пользу своеобразного синтеза. Одни явления описываются волновыми уравнениями, а другие — представлениями о фотонах, квантах электромагнитного излучения, которые были введены в оборот двумя немецкими физиками — Максом Планком и Альбертом Эйнштейном.

Объяснение:

4,6(21 оценок)
Открыть все ответы
Ответ:
Lunadiana
Lunadiana
22.05.2021

Объяснение:

Второй закон термодинамики устанавливает критерии необратимости термодинамических процессов. Известно много формулировок второго закона, которые эквивалентны друг другу. Мы приведем здесь только одну формулировку, связанную с энтропией.

Существует функция состояния - энтропия S, которая обладает следующим свойством: , (4.1) где знак равенства относится к обратимым процессам, а знак больше - к необратимым.

Для изолированных систем второй закон утверждает: dS і 0, (4.2) т.е. энтропия изолированных систем в необратимых процессах может только возрастать, а в состоянии термодинамического равновесия она достигает максимума (dS = 0,

d 2S < 0).

Неравенство (4.1) называют неравенством Клаузиуса. Поскольку энтропия - функция состояния, ее изменение в любом циклическом процессе равно 0, поэтому для циклических процессов неравенство Клаузиуса имеет вид:

, (4.3)

где знак равенства ставится, если весь цикл полностью обратим.

Энтропию можно определить с двух эквивалентных подходов - статистического и термодинамического. Статистическое определение основано на идее о том, что необратимые процессы в термодинамике вызваны переходом в более вероятное состояние, поэтому энтропию можно связать с вероятностью:

, (4.4)

где k = 1.38 10-23 Дж/К - постоянная Больцмана (k = R / NA), W - так называемая термодинамическая вероятность, т.е. число микросостояний, которые соответствуют данному макросостоянию системы (см. гл. 10). Формулу (4.4) называют формулой Больцмана.

С точки зрения строгой статистической термодинамики энтропию вводят следующим образом:

, (4.5)

где G (E) - фазовый объем, занятый микроканоническим ансамблем с энергией E.

Термодинамическое определение энтропии основано на рассмотрении обратимых процессов:

. (4.6)

Это определение позволяет представить элементарную теплоту в такой же форме, как и различные виды работы:

Qобр = TdS, (4.7)

где температура играет роль обобщенной силы, а энтропия - обобщенной (тепловой) координаты.

Расчет изменения энтропии для различных процессов

Термодинамические расчеты изменения энтропии основаны на определении (4.6) и на свойствах частных производных энтропии по термодинамическим параметрам:

(4.8)

Последние два тождества представляют собой соотношения Максвелла (вывод см. в гл. 5).

1) Нагревание или охлаждение при постоянном давлении.

Количество теплоты, необходимое для изменения температуры системы, выражают с теплоемкости:  Qобр = Cp dT.

(4.9)

Пример 4-3. Найдите изменение энтропии газа и окружающей среды, если n молей идеального газа расширяются изотермически от объема V1 до объема V2: а) обратимо; б) против внешнего давления p.

4,4(58 оценок)
Ответ:
Andriy1208
Andriy1208
22.05.2021
Давай попробуем рассуждать логически.

Наверное пружин у автомобиля 4 (по числу колёс). Тогда в среднем на каждую приходится по 1/4 веса, то есть по 250 кг * g = 2500 Н.
 
Тогда одна пружина, имеющая k=2кН/см = 200 кН/м = 200000 Н/м обожмётся на x=F/k = 2500 / 200000 =   0,0125 м (или 1,25 см, если угодно в сантиметрах).

В принципе, наверное энергию обжатых пружин вычислять не обязательно, потому что она будет равна потенциальной энергии "парящего" автомобиля, пока он ещё не просел на пружинах. Ибо закон сохранения энергии как бы работает. 

Е = mgx = 1000 * 10 * 0,0125 = 125 Дж.

Думаю что так. Цифра что-то навскидку получилась маловатой, смущает. Хотя ну не знаю. В общем, в итоге не уверен в ответе, может ещё кто решит, тогда сверимся.
4,8(78 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ