Выбросы радиоактивных веществ в несколько раз меньше угольной эл. станции аналогичной мощности (зола угольных ТЭС содержит процент урана и тория, достаточный для их выгодного извлечения);
Небольшой объём используемого топлива и возможность его повторного использования после переработки;
Высокая мощность: 1000—1600 МВт на энергоблок;
Низкая себестоимость энергии, особенно тепловой.
Недостатки атомных станций:
Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;
Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;
Последствия возможного инцидента крайне тяжелые, хотя его вероятность достаточно низкая;
Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700—800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.
Перспективы
Несмотря на указанные недостатки, атомная энергия представляется самой перспективной. Альтернативные получения энергии, за счёт энергии приливов, ветра, Солнца, геотермальных источников и др. на данный момент отличаются невысоким уровнем добываемой энергии и её низкой концентрацией. К тому же данные виды получения энергии несут в себе собственные риски для экологии и туризма («грязное» производство фотоэлектрических элементов, опасность ветряных станций для птиц, изменение динамики волн).
Интересный вопрос и совсем не такой однозначный..))) Предполагаю, что сила трения о воздух Вас не интересует...)) Тогда так: С одной стороны, казалось бы, сила трения скольжения пропорциональна силе давления тела на опору (или силе реакции опоры). Поскольку опоры нет, то и силы нет. Вроде, все ясно. Однако, предположим, что поверхность тела, обращенного к стене и поверхность стены достаточно обработаны и не имеют очевидных неровностей. Кроме того, предположим, что плоскость падающего тела, обращенная к стене, имеет достаточную площадь. А самое главное, - при падении тела между ним и стеной сохраняется достаточно маленькое расстояние. Приняв все это, мы обнаружим, что скорость воздушного потока (в системе координат, связанной с падающим телом) между телом и стеной будет выше, чем скорость остального потока воздуха. Это происходит аналогично возникновению подъемной силы на крыле самолета. И вот, у нас уже есть, по закону Бернулли, сила, активно прижимающая падающее тело к стене. А раз есть такая сила, то есть и сила реакции стены и, как следствие, сила трения скольжения тела о стену. Со стороны будет казаться, что тело как бы "прилипает" к стене. Причем, как только скорость падения возрастает, - увеличивается прижимная сила и сила трения, как следствие. Но сила трения тормозит падение тела и скорость падает, прижимная сила падает, сила трения уменьшается, - скорость увеличивается, прижимная сила растет и так до тех пор, пока тело не упадет окончательно. (Интересно было бы понаблюдать за таким падением...))) Ну, а на практике этот эффект используется в гонках Формулы1. Скорости болидов на прямой - хорошо за 300 км/ч, а клиренс(расстояние от днища автомобиля до дороги) настолько мал, что создающаяся при этом прижимная сила позволяет проходить повороты на такой скорости, которая обычному автомобилю и не снилась, даже если ему двигатель и позволяет достичь такой скорости. И еще. Все моряки знают, что двум кораблям нельзя идти одним курсом на близком расстоянии друг от друга, поскольку столкновение в этом случае из-за той же прижимной силы, неизбежно.
Интересный вопрос и совсем не такой однозначный..))) Предполагаю, что сила трения о воздух Вас не интересует...)) Тогда так: С одной стороны, казалось бы, сила трения скольжения пропорциональна силе давления тела на опору (или силе реакции опоры). Поскольку опоры нет, то и силы нет. Вроде, все ясно. Однако, предположим, что поверхность тела, обращенного к стене и поверхность стены достаточно обработаны и не имеют очевидных неровностей. Кроме того, предположим, что плоскость падающего тела, обращенная к стене, имеет достаточную площадь. А самое главное, - при падении тела между ним и стеной сохраняется достаточно маленькое расстояние. Приняв все это, мы обнаружим, что скорость воздушного потока (в системе координат, связанной с падающим телом) между телом и стеной будет выше, чем скорость остального потока воздуха. Это происходит аналогично возникновению подъемной силы на крыле самолета. И вот, у нас уже есть, по закону Бернулли, сила, активно прижимающая падающее тело к стене. А раз есть такая сила, то есть и сила реакции стены и, как следствие, сила трения скольжения тела о стену. Со стороны будет казаться, что тело как бы "прилипает" к стене. Причем, как только скорость падения возрастает, - увеличивается прижимная сила и сила трения, как следствие. Но сила трения тормозит падение тела и скорость падает, прижимная сила падает, сила трения уменьшается, - скорость увеличивается, прижимная сила растет и так до тех пор, пока тело не упадет окончательно. (Интересно было бы понаблюдать за таким падением...))) Ну, а на практике этот эффект используется в гонках Формулы1. Скорости болидов на прямой - хорошо за 300 км/ч, а клиренс(расстояние от днища автомобиля до дороги) настолько мал, что создающаяся при этом прижимная сила позволяет проходить повороты на такой скорости, которая обычному автомобилю и не снилась, даже если ему двигатель и позволяет достичь такой скорости. И еще. Все моряки знают, что двум кораблям нельзя идти одним курсом на близком расстоянии друг от друга, поскольку столкновение в этом случае из-за той же прижимной силы, неизбежно.
Объяснение:
Достоинства атомных станций:
Отсутствие вредных выбросов;
Выбросы радиоактивных веществ в несколько раз меньше угольной эл. станции аналогичной мощности (зола угольных ТЭС содержит процент урана и тория, достаточный для их выгодного извлечения);
Небольшой объём используемого топлива и возможность его повторного использования после переработки;
Высокая мощность: 1000—1600 МВт на энергоблок;
Низкая себестоимость энергии, особенно тепловой.
Недостатки атомных станций:
Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;
Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;
Последствия возможного инцидента крайне тяжелые, хотя его вероятность достаточно низкая;
Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700—800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.
Перспективы
Несмотря на указанные недостатки, атомная энергия представляется самой перспективной. Альтернативные получения энергии, за счёт энергии приливов, ветра, Солнца, геотермальных источников и др. на данный момент отличаются невысоким уровнем добываемой энергии и её низкой концентрацией. К тому же данные виды получения энергии несут в себе собственные риски для экологии и туризма («грязное» производство фотоэлектрических элементов, опасность ветряных станций для птиц, изменение динамики волн).