Белыш в 7 часов утра отплыл от пристани «Веселые зайчата» на плоту вниз по течению реки. Через 8 часов Рыжик оплыл от этой же пристани на моторной лодке со скоростью 25 км/час и через два часа догнал Белыша. Найти скорость течения реки.Решение.25 · 2 = 50 (км) – проплыл Рыжик до встречи с Белышом.8 + 2 = 10 (час) – плыл Белыш, пока его не догнал Рыжик.50 · 10 = 5 (км/час) – скорость, с которой плыл Белыша на плоту. Это и есть скорость течения реки (собственная скорость плота равна нулю).ответ: 5 км/час.
На рисунке изобрази груз, привязаный к нити; изобрази силу тяжести (mg) вертикально вниз с началом в центре грузика, а силу натяжения нити - наоборот, тобишь вверх (они друг друга компенсируют). На рисунке надо надписать обе силы и поставить над ними значок вектора. Ось Ox направь вверх, потом мы будем на нее "проецировать".
m=5 кг g=10 м/c^2 a=3 м/с^2
По 2 Закону Ньютона: mg(ветор)+T(вектор)=ma(вектор) В проекции на ось Х: Т-mg=ma (тут уже векторы не нужны, т.к мы уже спроецировали) Далее выражаем отсюда силу натяжения нити - T, получаем: T=ma+mg=m(a+g) Мы получили ответ в общем виде, теперь нам надо подставить туда наши значения: Т=5 кг * ( 3 + 10) м/с^2 = 65 Н