М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Dima2002dg
Dima2002dg
26.10.2020 12:47 •  Физика

Определите смещение (см) маятника в момент, когда его кинетическая энергия равна потенциальной. Амплитуда колебаний 6 см это

👇
Ответ:
dimabahov33
dimabahov33
26.10.2020
Чтобы определить смещение маятника в момент, когда его кинетическая энергия равна потенциальной, нам необходимо использовать законы сохранения энергии.

Для начала, давайте разберемся, что такое кинетическая и потенциальная энергия.

Кинетическая энергия (КЭ) - это энергия движущегося тела. Она зависит от массы (m) тела и его скорости (v) по формуле КЭ = 1/2 * m * v^2.

Потенциальная энергия (ПЭ) - это энергия, связанная с положением тела относительно других тел или некоторой точки в пространстве. В случае маятника, потенциальная энергия зависит от его высоты (h) над некоторой точкой (обычно называемой точкой подвеса) и его массы (m). Формула для потенциальной энергии маятника это ПЭ = m * g * h, где g - ускорение свободного падения (около 9,8 м/с^2 на Земле).

Теперь, когда мы знаем эти формулы, мы можем решить задачу.

Если кинетическая энергия маятника становится равной его потенциальной энергии, то мы можем записать следующее уравнение:
КЭ = ПЭ

1/2 * m * v^2 = m * g * h

Так как у нас нет информации о скорости маятника (v), мы должны найти другой способ выразить ее через известные нам величины.

У нас есть информация об амплитуде колебаний маятника (6 см). Амплитуда (A) - это расстояние от точки равновесия (среднего положения маятника) до крайней точки его колебаний. В нашем случае, A = 6 см = 0,06 м.

Когда маятник проходит через положение равновесия, его скорость достигает максимальной величины и равна нулю. Мы можем использовать эту информацию, чтобы найти скорость маятника в крайней точке его колебаний.

У нас есть формула для связи потенциальной и кинетической энергии, а также формула для нахождения скорости маятника через амплитуду колебаний.

Для нахождения скорости (v) маятника в крайней точке его колебаний можно использовать следующую формулу:
v = √(2 * g * h), где √ - квадратный корень.

Мы можем записать это уравнение в виде:
v = √(2 * g * A)

Теперь мы можем подставить найденное значение скорости (v) в уравнение КЭ = ПЭ и решить его относительно смещения (h).

1/2 * m * (√(2 * g * A))^2 = m * g * h

1/2 * m * 2 * g * A = m * g * h

m * g * A = m * g * h

A = h

Значит, смещение маятника в момент, когда его кинетическая энергия равна потенциальной, равно его амплитуде колебаний. В данном случае, смещение равно 6 см или 0,06 м.

Итак, смещение маятника составляет 0,06 м в момент, когда его кинетическая энергия равна потенциальной.
4,8(28 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ