A - длина бруска b - ширина бруска c - высота бруска S₁ = b*c - площадь самой маленькой грани S₂ = a*c S₃ = a*b - площадь самой большой грани p = F / S = g*m / S = g*ρ*V / S ρ = 2700 кг/м³ - плотность алюминия V = a*b*c - объем бруска S - площадь опоры Учтем, что чем площадь опоры меньше тем давление больше и запишем: p₁ = g*ρ*a*b*c / S₃ = g*ρ*a*b*c / (a*b) = g*ρ*c => c = p₁ / (g*ρ) p₂ = g*ρ*a*b*c / S₂ = g*ρ*a*b*c / (a*c) = g*ρ*b => b = p₂ / (g*ρ) p₃ = g*ρ*a*b*c / S₁ = g*ρ*a*b*c / (b*c) = g*ρ*a => a = p₃ / (g*ρ) V = (p₁ / (g*ρ)) * (p₂ / (g*ρ)) * (p₃ / (g*ρ)) = p₁*p₂*p₃ / (g³*ρ³) m = ρ*V = ρ * p₁*p₂*p₃ / (g³*ρ³) = p₁*p₂*p₃ / (g³*ρ²) m = 2430 Па*3200 Па*5625 Па / ((10 Н/кг)³*(2700 кг/м³)²) = 6,0 кг
d = V0 t => V0 = d / t.
по вертикали пучок движется по параболе под действием Кулоновской силы, которая равна по 2 закону Ньютона ma (пренебрегаем силой тяжести):
F = Ma,
E Q = Ma,
a = E Q / M.
при этом заряд Q пучка электронов равен Q = q * n, где q - заряд одного электрона, n - количество электронов
масса пучка электронов равна M = m * n, где m - масса одного электрона, n - число электронов
Тогда: a = E q / m.
по оси OY пучок электронов проходит расстояние, равное (начальная скорость в проекции на ось OY равна нулю, т.к. они перпендикулярны):
S = a t^2 / 2, где S - нам известно, 1 мм
S = E q t^2 / 2. Тогда
t = sqrt(2 S m / E q).
вернемся к движению относительно оси ОХ:
V0 = d / t = d / sqrt(2 S m / E q).
V0 = 5*10^-2 / sqrt(2 * 10^-3 * 9,1*10^-31 / 15*10^3 * 1,6*10^-19),
V0 = 5*10^-2 / sqrt(18,2*10^-34 / 24*10^-16),
V0 = 5*10^-2 / 8,706*10^-10,
V0 = 0,574*10^8 м/с