1.P1=mg - вес тела на поверхности
P2=mg-Fa - вес тела в воде
P1-P2=Fa - отнимем первое от второго
Р1-Р2=50 Н по условию
Fa=gpкV - сила архимеда, рк=800 кг/м3
P1-P2=gpкV
V=P1-P2/gpк = 50/10*800=0.00625 м3
рж=7900 кг/м3 - плотностьжелеза
m=pжV=7900*0.00625=49.4 кг
P1=mg=49.4*10=494 Н
2.Если тело плавает, то его вес равен нулю, т.к. mg=Fa . Это неточность в условии
P=mg
V=250 cм3=0.00025 м3
m=pкV - pк=500 кг\м3
P=pкVg=500*0.00025*10=1.25 Н
3.F+Fa=mg
F=mg-Fa - минимальная сила для поднятия
m=pчV - масса чугуна, рч=7000 кг/м3
Fa=gpсV - сила архимеда рс=830 кг/м3
0.5 дм3=0.0005 м3
F=gpчV-gpвV=gV(pч-pв)=10*0.0005*(7000-830)=30.85 Н
Mdt = d(Jω) или Mdt = dL
Где: Mdt – импульс момента силы (произведение момента силы М на промежуток времени dt)
Jdω = d(Jω) – изменение момента импульса тела,
Jω = L - момент импульса тела есть произведение момента инерции J на угловую скоростьω ω, а d(Jω) есть dL.
2. Кинематические характеристики Вращение твердого тела, как целого характеризуется углом φ, измеряющегося в угловых градусах или радианах, угловой скоростью
ω = dφ/dt (измеряется в рад/с)
и угловым ускорением
ε = d²φ/dt² (измеряется в рад/с²).
При равномерном вращении (T оборотов в секунду), Частота вращения — число оборотов тела в единицу времени:
f = 1/T = ω/2
Период вращения — время одного полного оборота. Период вращения T и его частота f связаны соотношением
T = 1/f
Линейная скорость точки, находящейся на расстоянии R от оси вращения
Угловая скорость вращения тела
ω = f/Dt = 2
Динамические характеристики Свойства твердого тела при его вращении описываются моментом инерции твёрдого тела. Эта характеристика входит в дифференциальные уравнения, полученные из уравнений Гамильтона или Лагранжа. Кинетическую энергии вращения можно записать в виде:
E=
В этой формуле момент инерции играет роль массы, а угловая скорость роль обычной скорости. Момент инерции выражает геометрическое распределение массы в теле и может быть найден из формулы:
Момент инерции механической системы относительно неподвижной оси a («осевой момент инерции») — физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:
где: mi — масса i-й точки, ri — расстояние от i-й точки до оси. Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении.
3. Маятник представляет собой замкнутую систему.
Если маятник находится в крайней точке, его потенциальная энергия максимальна, а кинетическая равна нулю.
Как только маятник начинает двигаться, егопотенциальная энергия уменьшается, а кинетическая - увеличивается.
В нижней точке кинетическая энергия максимальна, а потенциальная - минимальна. После этого начинается обратный процесс. Накопленная кинетическая энергия двигает маятник вверх и увеличивает, тем самым потенциальную энергию маятника. Кинетическая энергия уменьшается, пока маятник снова не остановится уже в другой крайней точке.
Можно сказать, что в процессе движения маятника происходит переход потенциальной энергии в кинетическую и наоборот.
Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается постоянной.
Или так: Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и силами упругости, остается неизменной.
(Сумма кинетической и потенциальной энергии тел называется полной механической энергией)