Кинети́ческая эне́ргия — скалярная функция, являющаяся мерой движения материальных точек, образующих рассматриваемую механическую систему, и зависящая только от масс и модулей скоростей этих точек[1]. Работа всех сил, действующих на материальную точку при её перемещении, идёт на приращение кинетической энергии[2]. Для движения со скоростями значительно меньше скорости света кинетическая энергия записывается как
{\displaystyle T=\sum {{m_{i}v_{i}^{2}} \over 2}},
где индекс {\displaystyle \ i} нумерует материальные точки. Часто выделяют кинетическую энергию поступательного и вращательного движения[3]. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением[4]. Когда тело не движется, его кинетическая энергия равна нулю. Возможные обозначения кинетической энергии: {\displaystyle T}, {\displaystyle E_{kin}}, {\displaystyle K} и другие. В системе СИ она измеряется в джоулях
молекулярно-кинетическая теория – раздел молекулярной , изучающий свойства вещества на основе представлений об их молекулярном строении и определенных законах взаимодействия между атомами (молекулами), из которых состоит вещество. считается, что частицы вещества находятся в непрерывном, беспорядочном движении и это их движение воспринимается как тепло.
до 19 в. весьма популярной основой учения о тепле была теория теплорода или некоторой жидкой субстанции, перетекающей от одного тела к другому. нагревание тел объяснялось увеличением, а охлаждение – уменьшением содержащегося внутри них теплорода. понятие об атомах долго казалось ненужным для теории тепла, однако многие ученые уже тогда интуитивно связывали тепло с движением молекул. так, в частности, думал ученый м.в.ломоносов. прошло немало времени, прежде чем молекулярно-кинетическая теория окончательно победила в сознании ученых и стала неотъемлемым достоянием .
многие явления в газах, жидкостях и твердых телах находят в рамках молекулярно-кинетической теории простое и убедительное объяснение. так давление, оказываемое газом на стенки сосуда, в котором он заключен, рассматривается как суммарный результат многочисленных соударений быстро движущихся молекул со стенкой, в результате которых они стенке свой импульс. (напомним, что именно изменение импульса в единицу времени приводит по законам механики к появлению силы, а сила, отнесенная к единице поверхности стенки, и есть давление). кинетическая энергия движения частиц, усредненная по их огромному числу, определяет то, что принято называть температурой вещества.
истоки атомистической идеи, т.е. представления о том, что все тела в природе состоят из мельчайших неделимых частиц-атомов, восходят еще к древнегреческим философам – левкиппу и демокриту. более двух тысяч лет назад демокрит писал: «…атомы бесчисленны по величине и по множеству, носятся же они во вселенной, кружась в вихре, и таким образом рождается все сложное: огонь, вода, воздух, земля». решающий вклад в развитие молекулярно-кинетической теории был внесен во второй половине 19 в. замечательных ученых дж.к.максвелла и л.больцмана, которые заложили основы статистического (вероятностного) описания свойств веществ (главным образом, газов), состоящих из огромного числа хаотически движущихся молекул. статистический подход был обобщен (по отношению к любым состояниям вещества) в начале 20 в. в трудах американского ученого дж.гиббса, который считается одним из основоположников статистической механики или статистической . наконец, в первые десятилетия 20 в. поняли, что поведение атомов и молекул подчиняется законам не классической, а квантовой механики. это дало мощный импульс развитию статистической и позволило описать целый ряд явлений, которые ранее не поддавались объяснению в рамках обычных представлений классической механики.