Молекулы газа при своем движении постоянно сталкиваются. Скорость каждой молекулы при столкновении изменяется. Она может возрастать и убывать. Однако среднеквадратичная скорость остается неизменной. Это объясняется тем, что в газе, находящемся при определенной температуре, устанавливается некоторое стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется определенному статистическому закону. Скорость отдельной молекулы с течением времени может меняться, однако доля молекул со скоростями в некотором интервале скоростей остается неизменной.
Нельзя ставить вопрос: сколько молекул обладает определенной скоростью. Дело в том, что, хоть число молекул очень велико в любом даже малом объеме, но количество значений скорости сколь угодно велико (как чисел в последовательном ряде), и может случиться, что ни одна молекула не обладает заданной скоростью.
Задачу о распределении молекул по скоростям следует сформулировать следующим образом. Пусть в единице объема nмолекул. Какая доля молекул имеет скорости от v1 до v1 + Δv? Это статистическая задача.
Основываясь на опыте Штерна, можно ожидать, что наибольшее число молекул будут иметь какую-то среднюю скорость, а доля быстрых и медленных молекул не очень велика. Необходимые измерения показали, что доля молекул , отнесенная к интервалу скорости Δv, т.е. , имеет вид, показанный на рис. 3.3. Максвелл в 1859 г. теоретически на основании теории вероятности определил эту функцию. С тех пор она называется функцией распределения молекул по скоростям или законом Максвелла.
Аналитически она выражается формулой
,где m – масса молекулы, k – постоянная Больцмана.Установление этой зависимости позволило определить кроме уже известной среднеквадратичной скорости еще две характерные скорости – среднюю и наиболее вероятную. Средняя скорость – это сумма скоростей всех молекул, деленная на общее число всех молекул в единице объема.
Средняя скорость, подсчитанная на основании закона Максвелла, выражается формулой
или.Наиболее вероятная скорость – это скорость, вблизи которой на единичный интервал скоростей приходится наибольшее число молекул. Она рассчитывается по формуле:.Сопоставляя все три скорости:1) наиболее вероятную ,
2) среднюю ,
3) среднюю квадратичную , – видим, что наименьшей из них является наиболее вероятная, а наибольшей – средняя квадратичная. Относительное число быстрых и медленных молекул мало (рис. 3.4).
При изменении температуры газа будут изменяться скорости движения всех молекул, а, следовательно, и наиболее вероятная скорость. Поэтому максимум кривой будет смещаться вправо при повышении температуры и влево при понижении температуры. Высота максимума не будет оставаться постоянной. Дело в том, что площадь заштрихованной фигуры численно равна доле общего числа молекул n, которую образуют молекулы со скоростями в указанном интервале. Общая площадь, ограниченная кривой распределения и осью абсцисс (скоростей), таким образом, равна единице и не меняется при изменении температуры (рис. 3.5). Поэтому высота максимума и меняется при изменении температуры.
Кривые распределения молекул по скоростям начинаются в начале координат, асимптотически приближаются к оси абсцисс при бесконечно больших скоростях. Слева от максимума кривые идут круче, чем справа. То, что кривая распределения начинается в начале координат, означает, что неподвижных молекул в газе нет. Из того, что кривая асимптотически приближается к оси абсцисс при бесконечно больших скоростях, следует, что молекул с очень большими скоростями мало. Это легко объяснимо. Для того чтобы молекула могла приобрести при столкновениях очень большую скорость, ей необходимо получить подряд много таких столкновений, при которых она получает энергию, и ни одного столкновения, при котором она ее теряет. А такая ситуация маловероятна.
2
Кроме измеряемой величины, необходимо знать единицы измерения этой величины. Конечно, на глаз отличить сантиметр от дюйма легко и заблудиться в единицах измерения на обычной чертежной линейке невозможно. Но без специальной маркировки вы не узнаете, что за прибор перед вами — амперметр или миллиамперметр. А путаница с электроизмерительными приборами чревата замыканием цепи.
3
Необходимо знать пределы измеряемой величины. Уличный термометр измерить отрицательную температуру воздуха, а термометр для ванной предназначен для измерения узкого диапазона температур в пределах нескольких градусов от температуры человеческого тела.
4
В разных случаях требуется разная точность измерения одной и той же величины. Уличный термометра определяет температуру воздуха с точностью до целого градуса, а медицинский термометр отследить изменения температуры тела с точностью до десятой доли градуса.
5
Чтобы определить цену деления маркированной шкалы, сначала определите количественное значение между двумя подписанными метками как разность двух соседних чисел. Например, на ученической линейке разность между двумя любыми цифрами - один сантиметр. А на спидометре разница между цифрами может быть десять километров в час.
6
Сосчитайте количество делений в границах выбранного участка шкалы. Разделите числовое значение интервала на количество промежутков между мелкими делениями. Если на линейке между двумя цифрами десять маленьких делений, цена одного такого деления будет равна одной десятой части сантиметра, или одному миллиметру. Если на спидометре между двумя цифрами с разницей в десять километров в час только одно деление, промежуток нужно разделить пополам. Полученная цена деления - пять километров в час.
7
Таким образом, цена деления шкалы может быть равна единице измерения по данной шкале или содержать несколько единиц. И возможна цена деления в долях единицы измерения.