Собрана электрическая цепь, схема которой показана на рисунке. Батарейки идеальные, напряжение U=9U=9 В. Чему равно напряжение на резисторе 2R? ответ выразите в вольтах, округлите до целого числа.
Вырезай что не не нужно Паровая машина была изобретена в XVIII веке, когда основной недостаток гидросиловых установок (зависимость от местных условий) , мало сказывавшийся при вращении жерновов зерновых мельниц, стал сильно препятствовать развитию металлургических предприятий, главным образом из-за невозможности применить водяные колёса для откачивания воды из рудников, удалённых от источников водной энергии. Возможность перевозки топлива сделала тепловой двигатель независимым от месторасположения источника энергии и позволила решать задачу рудничного водоотлива, в результате чего на рудниках появились теплосиловые установки. Решая задачу водоподъёма, изобретатели (Д. Папен во Франции, Т. Ньюкомен и Т. Севери в Англии и др. ) постепенно нашли конструктивные формы для осуществления непрерывного рабочего процесса паровой машины: отдельный паровой котёл, цилиндр, топочное устройство, краны и др. Однако это всё ещё были насосные установки, которые могли направлять работу цикла только на подъём воды и были не в состоянии удовлетворить потребности в двигателях для заводских машин (воздуходувных мехов, рудодробильных пестов, кузнечных молотов, лесопильных рам и др.) . Так возник переходный период (1700—1780) в энергетике, когда водяное колесо стало ограничивать развитие техники вследствие зависимости от местонахождения источника водной энергии; паровой двигатель, хотя и был свободен от местных условий, был освоен только для подъёма воды. Потребности заводов привели к созданию комбинированных установок, в которых паровой насос поднимал воду на водяное колесо, приводившее в движение заводские машины. Такие установки не решали задачи о заводском двигателе, так как теряли в своей гидравлической части свыше 2/3 работы, получаемой от парового цикла. Задача могла быть решена только путём замены гидравлической передачи работы механической, изысканием передаточного механизма периодически отдаваемую паровым циклом работу передавать потребителю непрерывно, в любой необходимой форме движения. Простейший передаточный механизм в форме балансира просуществовал целое столетие, так как позволил при низком давлении пара поднимать воду на большую высоту за счёт разности площадей сечения парового и водяных цилиндров, но не решал главной задачи заводского двигателя отдавать работу непрерывно. Применение двух цилиндров с последовательной отдачей работы их полостей на общий вал было впервые предложено И. И. Ползуновым в 1763, однако из-за смерти изобретателя проект не был завершён, и машина была разобрана после нескольких пробных пусков. В 80-х гг. XVIII века потребность в универсальном двигателе стала исключительно острой в связи с развитием первого этапа промышленного переворота — внедрением в производство прядильных и ткацких машин. Эти новые машины, дававшие возможность одновременного действия многих орудий, определили в последней четверти 18 в. период завершения первого этапа в развитии паровых машин. Задача приняла конкретную форму: необходимо было превратить паровую насосную установку в двигатель с вращательным движением вала. Решение этой задачи нашло своё отражение в патентах разных стран на паровые машины в 80-х гг. XVIII в. Наибольшее распространение получила паровая машина Джеймса Уатта, (Англия) , как наиболее экономичная вследствие отделения конденсатора от цилиндра. С 1800 развитие паровой машины и её внедрение в промышленности и на транспорте идёт возрастающими темпами. К середине XIX века суммарная мощность паровозов превосходит мощность фабричных установок. Во 2-й половине XIX века мощность судовых установок также становится выше мощности стационарных, а к концу века становится наибольшей составляющей в общем балансе установленной мощности, достигшей 120 млн. л. с.
Измерить какую-нибудь величину — это значит сравнить её с однородной величиной, принятой за единицу.Всякое измерение может быть выполнено с большей или меньшей точностью. В качестве примера рассмотрим измерение длины бруска линейкой с сантиметровыми делениями. Вначале определим цену деления линейки. Она будет равна 1 см. Если левый конец бруска совместить с нулевым штрихом, то правый будет находиться между 9 и 10 штрихами, но ближе к 10. Какое же из этих двух значений следует принять за длину бруска? Очевидно, то, которое ближе к истинному значению, т.е. 10 см. Считая, что длина бруска 10 см, мы допустим неточность, так как брусок чуть короче 10 см. В физике допускаемую при измерении неточность называют погрешностью измерений. Погрешность измерения не может быть больше цены деления измерительного прибора. В нашем случае погрешность измерения бруска не превышает 1 см. Если такая точность измерений нас не устраивает, то можно произвести измерения с большей точностью. Но тогда придётся взять масштабную линейку с миллиметровыми делениями, т.е. с ценой деления 1 мм. В этом случае длина бруска окажется равной 9,8 см. Для более точных измерений можно воспользоваться штангенциркулем с ценой деления 0,1 мм или 0,05 мм. Из этого примера видно, что точность измерений зависит от цены деления шкалы прибора.Чем меньше цена деления, тем больше точность измерения.Точность измерения зависит от правильного применения измерительного прибора, расположения глаз при отсчёте по прибору.Вследствие несовершенства измерительных приборов и несовершенства в развитии наших органов чувств при любом измерении получаются лишь приближённые значения, несколько бóльшие или меньшие истинного значения измеряемой величины.Во время выполнения лабораторных работ или просто измерений следует считать, что:Погрешность измерений равна половине цены деления шкалы измерительного прибора.При записи величин, с учётом погрешности, следует пользоваться формулой: A=a±Δa, где A — измеряемая величина, a — результат измерений, Δa — погрешность измерений (Δ — греческая буква «дельта»).
ответ::
54
Объяснение: