На рисунке изобрази груз, привязаный к нити; изобрази силу тяжести (mg) вертикально вниз с началом в центре грузика, а силу натяжения нити - наоборот, тобишь вверх (они друг друга компенсируют). На рисунке надо надписать обе силы и поставить над ними значок вектора. Ось Ox направь вверх, потом мы будем на нее "проецировать".
m=5 кг g=10 м/c^2 a=3 м/с^2
По 2 Закону Ньютона: mg(ветор)+T(вектор)=ma(вектор) В проекции на ось Х: Т-mg=ma (тут уже векторы не нужны, т.к мы уже спроецировали) Далее выражаем отсюда силу натяжения нити - T, получаем: T=ma+mg=m(a+g) Мы получили ответ в общем виде, теперь нам надо подставить туда наши значения: Т=5 кг * ( 3 + 10) м/с^2 = 65 Н
Штатная скорость км/ч м/с м/с м/с. Интервал движения Время посадки высадки Время торможения до остановки Тормозной путь м . Длина состава м .
Найти: дистанцию между составами в [м] и [мм].
Р е ш е н и е :
Все положения, упоминаемые в доказательстве решения, отмечены на приложенном к решению рисунке.
Искомая дистанция между поездами – это свободное пространство вдоль железнодорожного полотна. Таким образом – дистанция в данном случае – это расстояние от ведущего вагона (начала) заднего Скоростного состава (положение С) до Конца припаркованного состава (положение К) в тот момент, когда припаркованный собирается отправляться.
Нам неизвестно, является ли торможение составов перед остановкой равнозамедленным или нет, и нам это знать и не нужно (!), поскольку нам дано и время, и скорость, и тормозной путь. Всё, что нам нужно – это корректно учесть все слагаемые времени и пути при торможении.
Общий интервал движения составляет и это означает, что каждые секунд, в положении Н оказывается Начало очередного состава. Уже припаркованный состав простоял на станции а это означает, что следующему за ним составу осталось проехать из положения С (начало скоростного состава) до точки Н (начало припаркованного состава) в течение секунд.
Искомая дистанция между составами, как мы уже говорили выше, измеряется не от положения С до положения Н, а от положения С до положения К (конец припаркованного состава). Однако нам будет удобно найти весь остаточный путь СН (между положениями С и Н), а затем вычесть из него длину КН (между положениями К и Н), равную длине состава м.
Из секунд, оставшихся идущему следом составу, первые секунд он будет идти с постоянной скоростью м/с из положения С в положение О, а последующие секунд он будет останавливаться из положения О до положения Н.
Длину отрезка ОН мы и так знаем, это тормозной путь м . Теперь найдём СО, т.е. длину Мы знаем, что по отрезку СО состав двигается равномерно со скоростью в течение времени секунд, значит отрезок СО, т.е. м м .
Отсюда ясно, что вся длина СН = СО + ОН , т.е. СН м м.
Как было показано выше искомая дистанция – это длина СК, равная разности СН и КН, т.е. СН и .
m=5 кг g=10 м/c^2 a=3 м/с^2
По 2 Закону Ньютона:
mg(ветор)+T(вектор)=ma(вектор)
В проекции на ось Х:
Т-mg=ma (тут уже векторы не нужны, т.к мы уже спроецировали)
Далее выражаем отсюда силу натяжения нити - T, получаем:
T=ma+mg=m(a+g)
Мы получили ответ в общем виде, теперь нам надо подставить туда наши значения:
Т=5 кг * ( 3 + 10) м/с^2 = 65 Н
Отв. 65 Н