Объяснение:
Задача №4
Дано:
x = 0,04·cos(3π·t+π/2)
ν - ?
A - ?
V₀ - ?
a₀ - ?
Циклическая частота:
ω = 2π·ν (1)
Но из уравнения колебаний
ω = 3π (2)
Приравняем (1) и (2)
2π·ν = 3π
ν = 3π / (2π) = 1,5 Гц
A = 0,04 м
V₀ = A·ω = 0,04·3π ≈ 0,38 м/с
a₀ = A·ω² = 0,04·9π² ≈ 3,55 м/с²
Задача 5
Дано:
A = 20 см = 0,20 м
φ₀ = π/2
t = 1 мин = 60 c
n = 120
x(t) - ?
T = t/n = 60/120 = 0,5 с
ω = 2π/T = 4π рад/с
Записываем уравнение колебаний:
x(t) = A·cos(ω·t+φ₀)
x(t) = 0,20·cos(4π·t+π/2)
Задача 6
Дано:
V = 0,9·cos(2π·t+π/6)
ν - ?
ω = 2π
Но
ω = 2π·ν
ν = ω / 2π = 2π/2π = 1 Гц
Задача 7
t = 5 мин = 300 c
n = 300
L - ?
Период
T = t/n = 300/300 = 1 с
Но
T = 2π√ (L/g)
T² = 4π²·L / g
L = g·T² / (4·π²) = 10·1² / (4·3,14)² ≈ 0,25 м
Задача 8
Δt
n₁ = 30
n₂ = 20
L₁ = 80 см
L₂ - ?
T₁ = Δt/n₁
T₂ = Δt/n₂
T₂/T₁ = n₁ / n₂ = 30/20 = 1,5
Но
T₁ = 2π·√(L₁/g)
T₂= 2π·√(L₂/g)
T₂/T₁ = √ (L₂/L₁)
√ (L₂/L₁) = 1,5
L₂/L₁ = 1,5²
L₂ = L₁·2,25
L₂ = 80·2,25 = 180 см
Объяснение:
W = Iω2/2 (энергия равна моменту инерции вращающейся системы помноженного на половину квадрата угловой скорости)
Когда человек сближает гири, у него, на самом деле, сгибаются ещё и руки в локтях. Поэтому момент инерции человека тоже меняется, но этим можно пренебречь.
W1 = I1 общ.ω12/2 // Кинетическая энергия вращения до сближения гирь.
W2 = I2 общ.ω22/2 // Кинетическая энергия вращения после сближения гирь.
I1 общ. = 2I1 + Iчеловека // I1 - момент инерции одной гири до сближенния.
I2 общ. = 2I2 + Iчеловека // I1 - момент инерции одной гири после сближенния.
ω1 = 2πν1
ω2 = 2πν2
ΔW = W2 - W1 = I2 общ.ω22/2 - I1 общ.ω12/2 = (2I2 + Iчеловека)2π2ν22 - (2I1 + Iчеловека)2π2ν12
И что теперь?! Мы знаем всё, кроме момента инерции человека. Как же быть?! А очень просто. В описанном действии сохраняется момент количества движения. Слыхали о таком? Так вот в соответсвии с законом о сохранении момента количесва движения можно записать:
I1&omega1 = I2&omega2 // Здесь слева и справа стоят выражения называемые моментом количества движения (или момент импульса, т.к. это одно и тоже: кол-во движения ~ импульс)
2π(2I1 + Iчеловека)&nu1 = 2π(2I2 + Iчеловека)&nu2
Iчеловека(&nu2-&nu1) = 2I1ν1 - 2I2ν2
Iчеловека = (2I1ν1 - 2I2ν2)/(&nu2-&nu1)
Начнём численные рассчёты.
Можно было бы посчитать в общем виде, но мы не на экзамене.
I1 = mr12 = md12/4 = 2·1.52/4 = 1.125 кг·м2
I2 = mr22 = md22/4 = 2·0.82/4 = 0.32 кг·м2
Iчеловека = (2·1.125·1 - 2·0.32·1.5)/(1.5 - 1) = 2.58 кг·м2 (Я сейчас подумал и решил сообщить о поправке. Это не момент инерции человека, а момент инерции всей вращающейся системы исключая гири, т.е. человека, скамейки, содержимого карманов и т.п.)
Досчитываем до конца.
ΔW = 2π2(ν22(Iчеловека + 2I2) - ν12(Iчеловека + 2I1)) = 2·3,142·(1.52(2.58 + 2·1.125) - 1·(2.58 + 2·0.32)) = 150.8 Дж.
ответ: На 150.8 джоулей.