М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Прлплмопо
Прлплмопо
22.10.2021 15:33 •  Физика

(Я ИЗ СЛОВАЦКОЙ ШКОЛЫ, ПЕРЕВОД СДЕЛАН ПЕРЕВОДЧИКОМ, ОН НЕМНОГО КОРЯВЫЙ, НО ЕСЛИ СМОЖЕТЕ БУДУ БЕЗУМНО БЛАГОДАРЕН)
1. Сначала мы вытягиваем тележку на горизонтальном полу шпагатом так, чтобы шпагат был параллелен полу, затем, чтобы шпагат имел ненулевой угол с горизонтальным полом, и, наконец, шпагат перпендикулярен полу. Экспресс механическая работа во всех 3 случаях!
2. С поверхности Земли бросьте мяч вертикально вверх. Нарисуйте рисунок и опишите, какова позиционная и кинетическая энергия в начале движения, во время движения и в конце движения, и как эти формы энергии будут меняться во время движения мяча. Напишите отношения для работы, которую мы выполняем, когда мяч достигает вершины своей траектории!
(НИЖЕ - ОРИГИНАЛ (вдруг кому нужно))
1. Ťaháme vozík po vodorovnej podlahe za motúz najskôr tak, že motúz je rovnobežný s podlahou, potom tak, že motúz zviera s vodorovnou podlahou nenulový uhol a nakoniec tak, že motúz je kolmý na podlahu. Vyjadri mechanickú prácu vo všetkých 3 prípadoch !
2. Z povrchu Zeme vyhodíme zvislo nahor loptičku. Nakresli obrázok a popíš aká je polohová a pohybová energia na začiatku pohybu, v priebehu pohybu a na konci pohybu, a ako sa budú meniť tieto formy energie počas pohybu loptičky. Napíš vzťah pre prácu, ktorú vykonáme, keď loptička dosiahne vrchol svojej dráhy !

👇
Ответ:
Yorfound
Yorfound
22.10.2021

Объяснение:

1)

Если шпагат параллелен  поверхности пола, то работа:

A = F·S

Если под углом, то

A = F·S·cos α

Если под прямым углом, то

A =  F·S·cos 90° = 0

2)

В момент броска:

Кинетическая энергия максимальна, потенциальная равна нулю

Во время подъема потенциальная энергия увеличивается, кинетическая убывает.

В верхней точке траектории потенциальная энергия максимальна, кинетическая энергия равна нулю.

Работа силы тяжести по подъему тела в верхнюю точку отрицательная (поскольку сила тяжести противоположна направлению движения:

A = - m·g·H

4,6(34 оценок)
Открыть все ответы
Ответ:
Vovanik212
Vovanik212
22.10.2021
Если резко ударить мотком по лежащей на полу доске – то она подскочит. Это произойдет потому, что молоток передаст доске импульс, с которым она частично упруго провзаимодействует с полом и отскочит. Примерно такие же события здесь будут происходить между клином и горизонтальной поверхностью. Клин либо отскочит, если он провзаимодействует с поверхностью упруго, либо он просто потеряет энергию вертикального импульса при неупругом взаимодействии с горизонтальной поверхностью. А поэтому было бы ошибкой учесть только горизонтальную скорость клина в энергетическом уравнении.

Ещё раз, как именно клин после удара будет взаимодействовать с горизонтальной поверхностью – мы не знаем (будет скакать или просто будет двигаться горизонтально), поскольку нам не заданы параметры взаимодействия клина и поверхности (абсолютно-упругое, абсолютно-неупругое и т.п.), но в любом случае, нам необходимо учесть часть кинетической энергии, которую будет нести вертикальный (!) импульс клина.

Что бы развеять сомнения, добавлю, что, поскольку мы считаем удар мгновенным, то в тот момент, когда шар УЖЕ оторвётся от верхней поверхности – нижняя поверхность клина ЕЩЁ «не будет» знать, что клин уже движется вниз, поскольку сигнал (в виде упругой волны) о верхнем взаимодействии ещё не дойдёт до дна.

Шар взаимодействует с клином точно поперёк их общей поверхности в момент контакта. А поверхность эта сориентирована к горизонту под углом 30°. Стало быть, сила, действующая на клин – будет придавать вертикальный импульс и скорость в √3 раза больший, чем горизонтальный импульс и скорость.

Обозначим горизонтальную скорость клина, как – u, тогда его вертикальная скорость √3u .

Будем считать, что скорость шара после отскока направлена вбок и ВВРЕХ. Именно из этих соображений далее будем записывать законы сохранения (если получится отрицательное значение скорости, то значит, она направлена – вниз). Обозначим горизонтальную составляющую конечной скорости шара, как vx, а вертикальную, как vy.

Из закона сохранения импульса по горизонтали ясно, что:

mvx = Mu ;

vx = [M/m] u ;

Из закона сохранения импульса по вертикальной оси найдём vy:

mV = M√3u – mvy ;

vy = √3[M/m]u – V ;

Из закона сохранения энергии найдём горизонтальную скорость клина:

mV² = mvx² + mvy² + Mu² + M (√3u)² ;

mV² = [M²/m] u² + m ( √3[M/m]u – V )² + 4Mu² ;

mV² = [M²/m]u² + 3[M²/m]u² – 2√3MuV + mV² + 4Mu² ;

0 = 4[M²/m]u² – 2√3MuV + 4Mu² ;

√3V = 2( [M/m] + 1 ) u ;

u = √3V/[2(1+M/m)] ;

Потеря энергии: Eпот = M (√3u)²/2 = 9MV²/[8(1+M/m)²] =
= 9m²V²/[8M(1+m/M)²] = mV²/2 * 9m/[4M(1+m/M)²] ;

Eпот = Eнач * 9m/[4M(1+m/M)²]
где Eнач – начальная кинетическая энергия.

При m << M    :   Eпот —> 0 ;     (проверка очевидного предельного перехода)

vx = [M/m] u = [M/m] √3V/[2( [M/m] + 1 )] ;

vx = √3V/[2(1+m/M)] ;

vy = √3[M/m]u – V = √3[M/m] √3V/[2( [M/m] + 1 )] – V =
= 3V/[2+2m/M] – V = [3V–2V–2Vm/M]/[2+2m/M] ;

vy = V[1–2m/M]/[2(1+m/M)] ;

Тангенс угла отскока:

tgφ = vy/vx = [1–2m/M]/√3 ;
в частности, при M = 2m  шарик отскочит горизонтально.

При m << M    :   tgφ —> 1/√3    ;    φ —> 30°
(проверка очевидного предельного перехода)

ОТВЕТ: u = √3V/[2(1+M/m)] .
4,4(94 оценок)
Ответ:
Дарька2000
Дарька2000
22.10.2021
Если резко ударить мотком по лежащей на полу доске – то она подскочит. Это произойдет потому, что молоток передаст доске импульс, с которым она частично упруго провзаимодействует с полом и отскочит. Примерно такие же события здесь будут происходить между клином и горизонтальной поверхностью. Клин либо отскочит, если он провзаимодействует с поверхностью упруго, либо он просто потеряет энергию вертикального импульса при неупругом взаимодействии с горизонтальной поверхностью. А поэтому было бы ошибкой учесть только горизонтальную скорость клина в энергетическом уравнении.

Ещё раз, как именно клин после соударения с шаром будет взаимодействовать с горизонтальной поверхностью – мы не знаем (будет скакать или просто будет двигаться горизонтально), поскольку нам не заданы параметры взаимодействия клина и поверхности (абсолютно-упругое, абсолютно-неупругое и т.п.), но в любом случае, нам необходимо учесть часть кинетической энергии, которую будет нести вертикальный (!) импульс клина.

Что бы развеять сомнения, добавлю, что, поскольку мы считаем удар мгновенным, то в тот момент, когда шар УЖЕ оторвётся от верхней поверхности – нижняя поверхность клина ЕЩЁ «не будет знать», что клин уже движется вниз, поскольку сигнал (в виде упругой волны) о верхнем взаимодействии ещё не дойдёт до дна.

Шар взаимодействует с клином точно поперёк их общей поверхности в момент контакта. А поверхность эта сориентирована к горизонту под углом    \alpha = 30^o .    Стало быть, сила, действующая на клин – будет придавать вертикальный импульс и скорость в    ctg{ \alpha }    раз больший, чем горизонтальный импульс и скорость.

Обозначим горизонтальную скорость клина, как –    V ,    тогда его вертикальная скорость    Vctg{ \alpha } .

Будем считать, что скорость шара после отскока направлена вбок и ВВРЕХ. Именно из этих соображений далее будем записывать законы сохранения (если получится отрицательное значение скорости, то значит, она направлена – вниз). Обозначим горизонтальную составляющую конечной скорости шара, как    v ,    а вертикальную, как    v_y .

Из закона сохранения импульса по горизонтали ясно, что:

mv = MV ;

v = \frac{M}{m} V ;

Из закона сохранения импульса по вертикальной оси найдём    v_y :

m v_o = MV ctg{ \alpha } - mv_y ,

v_y = \frac{M}{m} V ctg{ \alpha } - v_o ;

Из закона сохранения энергии найдём горизонтальную скорость клина:

mv_o^2 = mv^2 + mv_y^2 + MV^2 + M (Vctg{ \alpha })^2 ;

mv_o^2 = \frac{M^2}{m} V^2 + m ( \frac{M}{m} V ctg{ \alpha } - v_o )^2 + \frac{MV^2}{ \sin^2{ \alpha } } ;

mv_o^2 = \frac{M^2}{m} V^2 + \frac{M^2}{m}V^2 ctg^2{ \alpha } - 2MVv_o ctg{ \alpha } + mv_o^2 + \frac{MV^2}{ \sin^2{ \alpha } } ;

0 = \frac{M^2 V^2}{m \sin^2{ \alpha } } - \frac{2MVv_o}{ tg{ \alpha } } + \frac{MV^2}{ \sin^2{ \alpha } } ;

2 v_o \sin{ \alpha } \cos{ \alpha } = ( 1 + \frac{M}{m} ) V ;

V = v_o \frac{ \sin{ 2 \alpha } }{1+M/m} ;

Для угла    \alpha = 30^o :

V = \frac{ \sqrt{3} \ v_o }{2(1+M/m)} ;

В частности, при    m = M : \ \ \ V = v_o \frac{ \sin{ 2 \alpha } }{2} ;

В частности, при    m M : \ \ \ V = v_o \sin{ 2 \alpha } ;

Часть энергии не превратится ни в движение клина вдоль плоскости, ни в движение шара, а уйдёт вместе с вертикальным импульсом клина либо в колебания клина над поверхностью, либо во внутреннюю энергию (при неупругом взаимодействии клина с поверхностью). Что бы там с этой энергией далее не происходило – необходимо учесть эту энергию отдельно, чтобы не отнести её по ошибке к энергии горизонтального движения клина. После пояснения термина – «потеря энергии» в контексте данной задачи, можно эту потерю и посчитать.

Потеря энергии:    E_{lost} = \frac{M}{2} ( V ctg{ \alpha } )^2 = 2M ( \frac{ v_o \cos^2{ \alpha } }{1+M/m} )^2 ;

E_{lost} = \frac{ m v_o^2 }{2} \cdot \frac{4m}{M} (\frac{ cos^2{ \alpha } }{1+m/M} )^2 ;

E_{lost} = \frac{4m}{M} (\frac{ cos^2{ \alpha } }{1+m/M} )^2 E_o = \frac{4M}{m} (\frac{ cos^2{ \alpha } }{1+M/m} )^2 E_o ;

где    E_o    – начальная кинетическая энергия.

Для угла    \alpha = 30^o :

E_{lost} = \frac{9m}{4M(1+m/M)^2} E_o = \frac{9M}{4m(1+M/m)^2} E_o ;

При    m
(проверка очевидного предельного перехода)

При    m = M \ \ \ : \ \ \ E_{lost} = \frac{9}{16} E_o ;

При    m M \ \ \ : \ \ \ E_{lost} \to 0 ;
На гладкой горизонтальной поверхности покоится клин массой m. на грань, составляющей угол 30 градусо
На гладкой горизонтальной поверхности покоится клин массой m. на грань, составляющей угол 30 градусо
На гладкой горизонтальной поверхности покоится клин массой m. на грань, составляющей угол 30 градусо
На гладкой горизонтальной поверхности покоится клин массой m. на грань, составляющей угол 30 градусо
На гладкой горизонтальной поверхности покоится клин массой m. на грань, составляющей угол 30 градусо
4,5(5 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ