1) s = at − вt² + ct³
начнем со скорости тела.
известно что скорость тела это 1-ая производна от пути по времени
в нашем случа
2) s'(t)=v(t)=(ct³− вt² + at)'=3ct²-2bt+a
а ускорение это 1-ая производная от скорости по времени или втора поризводная от пути по времени
для нашего уравнения
3) v'(t)=s''(t)=(3ct²-2bt+a)'=6ct-2b
ну а теперь просто подставим в наши три уравнения t=2 а = 2 м/с, в = 3 м/с², с = 4 м/с³
s(2)=4*2³-3*2²+2*2=32-12+4=24 м
v(2)=3*4*2²-2*3*2+2=48-12+2=38 м/с
a(2)=6*4*2-2*3=48-6=42 м/с²
По определению, сила тяжести на поверхности планеты складывается из гравитационного притяжения планеты и центробежной силы инерции, вызванной суточным вращением планеты[1][2].
Остальные силы (например, притяжение Луны и Солнца) ввиду их малости не учитывают или изучают отдельно как временные изменения гравитационного поля Земли[3][4][5].
Сила тяжести сообщает всем телам, независимо от их массы, одно и то же ускорение[6] и является консервативной силой[7].
Сила тяжести
P
→
{\vec P}, действующая на материальную точку массой
m
m, вычисляется по формуле[6]:
P
→
=
m
g
→
{\displaystyle {\vec {P}}=m{\vec {g}}}
где:
g
→
{\vec g} — ускорение, сообщаемое телу силой тяжести, которое называется ускорением свободного падения[8].
Если в пределах протяжённого тела поле сил тяжести однородно, то равнодействующая сил тяжести, действующих на элементы этого тела, приложена к центру масс тела[9].
На тела, движущиеся относительно поверхности Земли, кроме силы тяжести, также действует сила Кориолиса[10][11][12].