1). Условие равновесия рычага:
F₁L₁ = F₂L₂ => F₂ = F₁L₁ : L₂ = m₁gL₁ : L₂ = 15·10·3 : 6 = 75 (H)
2). Наклонная плоскость дает выигрыш в силе во столько раз, во сколько ее длина больше высоты.
Таким образом, выигрыш в силе будет минимальным при максимальном наклоне плоскости к горизонту, то есть у второй плоскости с углом наклона 42°.
3). В том случае, если синий груз обозначен m₁, красный - m₂,
зеленый - m₃:
Условие равновесия рычага:
F₁L₁ + F₂L₂ = F₃L₃
m₁gL₁ + m₂gL₂ = m₃gL₃
m₂ = (m₃gL₃ - m₁gL₁) : gL₂ = (64·10·3 - 15·10·4) : (10·2) = 66 (кг)
4). Если грузы слева направо обозначены: m₁; m₂; m₃; m₄, то:
Условие равновесия левого рычага:
m₁gL₁ = m₂gL₂ => m₂ = m₁gL₁ : gL₂ = 80·2 : 1 = 160 (кг)
Общая масса левого рычага: m' = 80 + 160 = 240 (кг)
Условие равновесия нижнего рычага:
m'gL₁ = m''gL₂ => m'' = m'L₁ : L₂ = 240·1 : 5 = 48 (кг)
Условие равновесия правого рычага:
m₃gL₃ = m₄gL₄
Так как m₃ + m₄ = m'' = 48 (кг), то:
(48 - m₄)L₃ = m₄L₄
48 - m₄ = m₄ · 3
4m₄ = 48
m₄ = 12 (кг) m₃ = 48 - 12 = 36 (кг)
На это потребуется 680 кДж.
Горячая вода может остыть только до 0, отдав при этом 378 кДж. С учетом потерь - 341 кДж
Значит весь лед растопить не удастся.
Для нагревания на 5 градусов 2 кг льда нужно 2100*2*5=21 кДж (уд. теплоемкость льда 2100 Дж/(кг*К) )
Вся остальная теплота (341-21=320 кДж) уйдет на плавление части льда.
Расплавить мы сумеем 320/340=0.94 кг льда.
В результате получим равновесную систему лед+вода при температуре 0 градусов, в которой будет 1,94 кг воды и 1,06 кг льда