КПД идеального теплового двигателя (идеальный – значит работающий по циклу Карно) определяют из формулы:
\[\eta = \frac{{{T_н} – {T_х}}}{{{T_н}}}\]
Температуры в этой формуле фигурируют в Кельвинах, а в условии даны в градусах Цельсия, поэтому нужно перевести их из одной единицы измерения в другую.
\[480^\circ\;C = 753\;К\]
\[30^\circ\;C = 303\;К\]
Число коэффициент полезного действия \(\eta\) равен:
Есть такой закон Архимеда для жидкостей. Средняя плотность железного гвоздя больше плотности воды. Следовательно, гвоздь имеет массу больше, чем равное с ним по объему количество воды. Это значит, что выталкивающая сила, действующая на гвоздь меньше, чем сила тяжести, действующая на него же. Вывод - равнодействующая сил направлена вниз, гвоздь тонет.
С кораблем - все наоборот. Он внутри полый, и сделано это специально, в первую очередь для того, чтобы его средняя плотность (по всему объему) была меньше, чем плотность воды. Следовательно, корабль имеет массу меньше, чем равное с ним по объему количество воды. Корабль погружается до тех пор, пока сила тяжести, действующая на него не уравновесится выталкивающей силой. Вывод - равнодействующая сил равна нулю, корабль плывет.
Кстати, если понизить среднюю плотность воды (например, наполнив ее пузырьками воздуха) , то прекрасно плававший до тех пор корабль может "потерять плавучесть" и затонуть.
Дано:
\(t_н=480^\circ\) C, \(t_х=30^\circ\) C, \(\eta-?\)
Решение задачи:
КПД идеального теплового двигателя (идеальный – значит работающий по циклу Карно) определяют из формулы:
\[\eta = \frac{{{T_н} – {T_х}}}{{{T_н}}}\]
Температуры в этой формуле фигурируют в Кельвинах, а в условии даны в градусах Цельсия, поэтому нужно перевести их из одной единицы измерения в другую.
\[480^\circ\;C = 753\;К\]
\[30^\circ\;C = 303\;К\]
Число коэффициент полезного действия \(\eta\) равен:
\[\eta = \frac{{753 – 303}}{{753}} = 0,598\]
ответ: 0,598.