ответ:
fт=maц(1) силу тяготения найдем из закона всемирного тяготения, учитывая, что высота орбита мала, т.е. она является околоземной: fт=gmmr2(2) центростремительное ускорение спутника, движущегося со скоростью υ1, равно: aц=υ21r(3) в равенство (1) подставим выражения (2) и (3): gmmr2=mυ21r значит первую космическую скорость можно определять по такой формуле: υ1=gmr√ по условию r=2r3 и m=2mз, поэтому: υ1=g2mз2rз√=gmзrз√ в принципе после получения этой формулы можно было сказать, что первая космическая скорость на данной планете такая же, как и у земли. но мы «добьём» до конца. домножим и поделим дробь под корнем на r3, тогда: υ1=gmзr2з⋅rз⎷ выражение gmзr2з равно ускорению свободного падения g вблизи поверхности земли, в итоге имеем: υ1=grз−−−√ напомним, что радиус земли равен 6,4·106 м, поэтому численный ответ равен: υ1=10⋅6,4⋅106√=8000м/с
источник:
объяснение:
Со скоростью - все верно: v = v₀ + at
и через 1 секунду после начала движения скорость тела будет:
v = 1 + 0,5 · 1 = 1,5 (м/с)
А вот с пройденным расстоянием не все так просто. Дело в том, что скорость тела возрастает не дискретно и моментально при прохождении одной секунды, а линейно и поступательно. Это означает, что скорость тела внутри любого промежутка времени не остается постоянной, а продолжает расти. То есть можно говорить о том, что при данном виде движения график зависимости скорости от времени представляет собой прямую линию, а вот график зависимости пройденного расстояния от времени является частью параболы:
s = v₀t + at²/2
И через одну секунду после начала движения данное тело пройдет расстояние:
s₁ = 1 · 1 + 0,5 · 1 : 2 = 1,25 (м)