Под каким углом к горизонту необходимо бросить камень с обрывистого берега реки, чтобы он упал в воду возможно дальше от берега? Высота обрыва H=10 м, начальная скорость камня v0=10 м/с.
Без учета силы трения тело движется по параболе. Если бы мы бросали из точки А, то наибольшая дальность полета достигалась бы при угле броска в 45°. В этом случае, в точке А горизонтальная и вертикальная составляющие вектора скорости равны между собой.
v_y=v_xv
y
=v
x
Горизонтальная составляющая не меняется, т.к. ускорение свободного падения действует по вертикали.
В точке броска вертикальная составляющая уже другая, а горизонтальная та же.
Воспользуемся формулой перемещения
s= \frac{v_2^2-v_1^2}{2a}s=
2a
v
2
2
−v
1
2
В нашем случае s=h₀, скорости - вертикальные составляющие в точке А и в точке броска. Тогда
Такое значение косинуса недопустимо. Это говорит о том, что предложенная скорость слишком мала, что бы камень мог следовать по оптимальной траектории. Максимальное значение косинуса равно 1, следовательно, угол будет равен 0. Значит, бросаем горизонтально.
1) Масса ОЛОВА в КУБ1? 44.5*40%*7,3 = 129,94 ~130 г 2) Масса свинца = 44,5*0,6*11,3 = 301,71 ~302 г 3)ОБЩАЯ масса КУБ1= 431,65 ~432 г. 4) Делаем НОВЫЙ КУБИК. массой 432 г, но из ПОС-60. Решаем уравнение (0,6*7,3 +0,4*11,3)*У = 432 - 60% олова и 40% свинца весят 432 г. Отсюда У =(4,38+4,52)*У У=48,5. Проверка 212,43+219,22=431,65 - такая же масса. 5) Объем олова - делим на плотность = 212,43/7,3=29,1 см3 Объем свинца - 219,22/11,3=19,4 см3 6) Объем НОВОГО куба = 29,1+19,4=48,5 см3 ПОНЯТНО, ведь ЛЕГКОГО олова стало БОЛЬШЕ. А ведь этот результат мы получили В ЧЕТВЕРТОЙ СТРОКЕ,ГДЕ РЕШАЛИ УРАВНЕНИЕ РАВНЫХ МАСС. ответ: Объем из ПОС-60 имеет объем 48,5 см3
Без учета силы трения тело движется по параболе. Если бы мы бросали из точки А, то наибольшая дальность полета достигалась бы при угле броска в 45°. В этом случае, в точке А горизонтальная и вертикальная составляющие вектора скорости равны между собой.
v_y=v_xv
y
=v
x
Горизонтальная составляющая не меняется, т.к. ускорение свободного падения действует по вертикали.
В точке броска вертикальная составляющая уже другая, а горизонтальная та же.
Воспользуемся формулой перемещения
s= \frac{v_2^2-v_1^2}{2a}s=
2a
v
2
2
−v
1
2
В нашем случае s=h₀, скорости - вертикальные составляющие в точке А и в точке броска. Тогда
\begin{gathered}h_0= \frac{v_0^2sin^2 \alpha-v_0^2cos^2 \alpha }{-2g} \\ \frac{2gh_0}{v_0^2} =cos^2 \alpha -sin^2 \alpha \\ \frac{2gh_0}{v_0^2} =cos2 \alpha \\cos 2 \alpha =\frac{2*9.8*20}{14^2} =2\end{gathered}
h
0
=
−2g
v
0
2
sin
2
α−v
0
2
cos
2
α
v
0
2
2gh
0
=cos
2
α−sin
2
α
v
0
2
2gh
0
=cos2α
cos2α=
14
2
2∗9.8∗20
=2
Такое значение косинуса недопустимо. Это говорит о том, что предложенная скорость слишком мала, что бы камень мог следовать по оптимальной траектории. Максимальное значение косинуса равно 1, следовательно, угол будет равен 0. Значит, бросаем горизонтально.
ответ: 0