U = 10·cos (2·10³·π·t), C = 2,6·10⁻⁸ Ф
ω = 2·10³·π рад/с
Период электромагнитных колебаний: T = 2π/ω = 2π/2·10³·π = 10⁻³ с.
ω = 1/√((LC)
Индуктивность контура: L = 1/(ω²C) = 1/((2·10³·π)²·2,6·10⁻⁸) ≈ 10⁻³ Гн
Максимальная энергия электрического поля:
Eэ = (C·Umax²)/2 = (2,6·10⁻⁸·10²)/2 = 1,3·10⁻⁶ Дж.
Максимальная энергия магнитного поля:
Eм = Eэ = 1,3·10⁻⁶ Дж.
Eм = (L·Imax²)/2
Амплитуда тока: Imax = √(2·Eм/L) = √(2·1,3·10⁻⁶/10⁻³) ≈ 0,05 А.
Зависимость силы тока от времени: I = Imax·sin (2·10³·π·t) = 0,05·sin (2·10³·π·t).
Объяснение:
Рассмотрим сначала простейший вариант : шарик бросают под уклон плоскости с нулевой высоты под углом α к горизонту.
Координаты шарика изменяются так:
x(t) = x0 + V0·t·cos(α)
y(t) = y0 + V0·t·sin(α) - g·t2/2
где x0 = 0 и y0 = 0 - начальные координаты, а α - угол бросания.
Боковая проекция плоскости - это обычная прямая с классическим уравнением y = k·x + b . В нашем случае угловой коэффициент
k = -tg(φ) = -tg(30°) = -1 / √3 = -0,577 , а b=0 .
Главный аргумент у нас t (а не x), приведём уравнение прямой к аргументу t :
yп(t) = k·x(t) = k·V0·t·cos(α)
Согласно Условию в момент t2 шарик коснётся плоскости, значит :
V0·t2·sin(α) - g·t22/2 = yп(t2)
Решим уравнение V0·t2·sin(α) - g·t22/2 = k·V0·t2·cos(α) относительно α:
2 корня : α1 = 1,6 рад и α2 = 0,491 рад.
Первый корень соответствует углу бросания 92° и x=-0,03 - то есть бросание вверх-назад, что не соответствует выбранному варианту "шарик бросают под уклон плоскости".
Второй корень α2 = 28° даёт нам координаты удара x2 = x(t2) = 0,71 м, y2 = y(t2) = -0,41 м.
Искомое расстояние от точки бросания находим как гипотенузу : L = √(x22 + y22) = 0,82 м.
Можно усложнить задачу и задать какую-нибудь начальную высоту бросания y0 > 0.
При y0 = 1 м (рост мальчика) α = -0,76 рад = -43°. То есть: в этом случае бросаем под углом вниз (а не вверх), иначе полёт будет дольше, чем заданное t2 !
x2 = x(t2) = 0,58 м, y2 = y(t2) = -0,36 м, L = √(x22 + y22) = 0,67 м.
ответ : при бросании с нулевой высоты L = 0,82 м, при бросании с высоты 1м L = 0,67 м.