Предположим, весь лед растает. На это потребуется 680 кДж. Горячая вода может остыть только до 0, отдав при этом 378 кДж. С учетом потерь - 341 кДж Значит весь лед растопить не удастся. Для нагревания на 5 градусов 2 кг льда нужно 2100*2*5=21 кДж (уд. теплоемкость льда 2100 Дж/(кг*К) ) Вся остальная теплота (341-21=320 кДж) уйдет на плавление части льда. Расплавить мы сумеем 320/340=0.94 кг льда. В результате получим равновесную систему лед+вода при температуре 0 градусов, в которой будет 1,94 кг воды и 1,06 кг льда
Тут, думаю, фишка в том, чтобы считать, что период обращения корабля, летящего по такой орбите, равен периоду обращения корабля, летящего по круговой орбите с радиусом, равны большой полуоси эллипса. Прикинем примерно, что радиус Земной орбиты = 1 а.е., а радиус Марсианской = 1,5 а.е. Ещё из условия нужно догадаться, что такой полёт возможен по единственной траектории, когда занимает ровно половину длины эллипса, то есть положение Земли в момент старта корабля, и положение Марса в момент прибытия , находятся ровно противоположно относительно Солнца. И ещё необходимо привлечь третий закон Кеплера, говорящий о том, что квадраты периодов обращения планет относятся как кубы радиусов их орбит.
Теперь соединим все эти знания в кучку, и попробуем написать уравнение периода обращения корабля вокруг Солнца по такой орбите, как дано в условии.
( Тк / Тз ) ^2 = (Rк / Rз ) ^3 здесь индекс к относится к кораблю, индекс з - к Земле.
Измерять период обращения будем в Земных годах, поэтому считаем Тз = 1. Rк = (Rм + Rз) / 2, здесь индекс м относится к Марсу Подставляем, получаем:
Тк = [ (1,5 + 1 ) / 2 ] ^ (3/2) = 1,4 Земных года, если не ошибся на калькуляторе.
Следовательно, половину орбиты (это и есть время полёта от Земли до Марса по данной траектории, что спрашивается в задаче) корабль пролетит за 1,4 / 2 = 0,7 Земных лет.
Ну, если нигде не накосячил в вычислениях. Лучше проверь за мной.
На это потребуется 680 кДж.
Горячая вода может остыть только до 0, отдав при этом 378 кДж. С учетом потерь - 341 кДж
Значит весь лед растопить не удастся.
Для нагревания на 5 градусов 2 кг льда нужно 2100*2*5=21 кДж (уд. теплоемкость льда 2100 Дж/(кг*К) )
Вся остальная теплота (341-21=320 кДж) уйдет на плавление части льда.
Расплавить мы сумеем 320/340=0.94 кг льда.
В результате получим равновесную систему лед+вода при температуре 0 градусов, в которой будет 1,94 кг воды и 1,06 кг льда