Двигаясь по круговой орбите радиуса r, на спутник действует сила земного тяготения gmM/r2, где g - постоянная тяготения, m - масса спутника и M - масса планеты (Земли в нашем случае). Согласно второму закону Ньютона сила тяготения равна центростремительной силе mv2/r. Отсюда получаем выражение для скорости движения спутника по круговой орбите: v=(g M/r)1/2 Период обращения спутника вокруг Земли Tсп равен длине орбиты 2pr, делённой на скорость движения спутника v: Tсп=2pr/v=2p (r3/gM)1/2 Если этот орбитальный период Tсп равен периоду вращения Земли вокруг собственной оси (примерно 24 часа), то спутник будет "висеть" над одним и тем же районом Земли, а такая орбита называется геостационарной. Геостационарная орбита лежит в плоскости экватора Земли. Её радиус составляет 42164 км, что примерно в 6 раз больше радиуса Земли. Небесные координаты спутника на геостационарной орбите остаются постоянными и мы можем легко направить на него параболическую антенну (например, для приема спутникового телевидения). Зная период вращения (24 часа) и радиус Земли легко вычислить линейную скорость вращения на экваторе: v0 = w R, где w = 2p/86400 об/сек, и при R = 6378 км получается v0 ~ 460 м/c Радиус Земли R = 6400 км, масса Земли М = 6 • 1024 кг.
Пусть время , нужное поезду , чтобы не опоздать равно T= S/v -где S- расстояние между остановками и v- данная скорость. Время до закрытого переезда равно t1=S1/v , где S1 - путь от начала движения до переезда. Время , за которое поезд проедет до следующей остановки от переезда с новой скорость U( U - искомая скорость ) равно t2 t2= L/U Вcё время , которое поезд потратит на перемещение до остановки равно T = t1+t2+t , где t - время задержки, данное в условии. Оно равно времени , нужному чтобы не опоздать. Откуда t1+t2+t=S/v. Но S= S1+L , тогда S1/v+L/U+t= S1/v+L/v. S1/v- сокращается : L/U+t=L/v. L/U= (L-t*v)/v Откуда U=Lv/(L-v*t) U=3.75 км * 50 км/ч/(3.75 км- 50 км/ч* 0.025 ч)= 75 км/ч. ответ: U= 75 км/ч
Двигаясь по круговой орбите радиуса r, на спутник действует сила земного тяготения gmM/r2, где g - постоянная тяготения, m - масса спутника и M - масса планеты (Земли в нашем случае). Согласно второму закону Ньютона сила тяготения равна центростремительной силе mv2/r. Отсюда получаем выражение для скорости движения спутника по круговой орбите:
v=(g M/r)1/2
Период обращения спутника вокруг Земли Tсп равен длине орбиты 2pr, делённой на скорость движения спутника v:
Tсп=2pr/v=2p (r3/gM)1/2
Если этот орбитальный период Tсп равен периоду вращения Земли вокруг собственной оси (примерно 24 часа), то спутник будет "висеть" над одним и тем же районом Земли, а такая орбита называется геостационарной. Геостационарная орбита лежит в плоскости экватора Земли. Её радиус составляет 42164 км, что примерно в 6 раз больше радиуса Земли. Небесные координаты спутника на геостационарной орбите остаются постоянными и мы можем легко направить на него параболическую антенну (например, для приема спутникового телевидения).
Зная период вращения (24 часа) и радиус Земли легко вычислить линейную скорость вращения на экваторе: v0 = w R, где w = 2p/86400 об/сек, и при R = 6378 км получается v0 ~ 460 м/c
Радиус Земли R = 6400 км, масса Земли М = 6 • 1024 кг.