несобственные, кратные.
Решение интегралов онлайн »
Несобственный интеграл »
График функции
Это сервис построения графиков на плоскости и в пространстве. Приводится подробное решение на исследование функции.
Построение графиков функций »
График неявной функции »
Построение поверхности »
Решение систем неравенств
Вы можете попробовать решить любую систему неравенств с данного калькулятора систем неравенств.
Решение системы неравенств »
Комплексные числа
Здесь можно вычислить комплексные выражения: находить формы (алгебраическую, тригонометрическую, показательную); модуль и аргумент, сопряжённое, геометрическую интерпретацию.
Комплексные числа »
Решение матриц
Такие действия как умножение, обратная матрица, транспонирование матриц, сумму, ранг матрицы, возведение матриц в степень, нахождение определителя матрицы можно провести здесь.
Вы получите подробное решение. Для этого необходимо выполнить простые шаги - ввод матрицы или ввод числа в зависимости от действия.
Решение матриц »
Вот на примере
Объяснение:
Решение. Так как пуля застревает в шаре, то применять сразу закон сохранения энергии нельзя. Рассмотрим вначале процесс столкновения пули и шара (неупругий удар), затем движение системы шар-пуля.
Процесс столкновения пули и шара (рис. 1). Пусть M —масса шара. Так как удар неупругий, то для нахождения скорости системы шар-пуля воспользуемся законом сохранения импульса:
m⋅υ0→=(m+M)⋅υ⃗ 1,
0Х: m⋅υ0 = (m + M)⋅υ1
или
υ1=m⋅υ0m+M.(1)
Процесс движения системы мяч-пуля. Воспользуемся законом сохранения энергии. За нулевую высоту примем высоту пола (рис. 2).
Полная механическая энергия системы тел в начальном состоянии равна
W0=(m+M)⋅υ212+(m+M)⋅g⋅H.
Полная механическая энергия системы тел в конечном состоянии
W=(m+M)⋅υ222.
Так как на тело не действует внешняя сила (сопротивлением воздуха пренебречь), то выполняется закон сохранения механической энергии. Запишем его с учетом уравнения (1):
(m+M)⋅υ212+(m+M)⋅g⋅H=(m+M)⋅υ222,
υ2=υ21+2g⋅H−−−−−−−−−√=(m⋅υ0m+M)2+2g⋅H−−−−−−−−−−−−−−−−−√.