М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
GAMAEW66
GAMAEW66
05.04.2022 20:43 •  Физика

Сила струму в колі 5 А при напрузі 220В. Якої довжини дріт, виготовлений з піхрому потрібно взяти. Якщо його поперечний переріз становить 2 мм(в квадраті)​

👇
Открыть все ответы
Ответ:
alopavopa
alopavopa
05.04.2022
1. Импульс момента силы, Mdt, действующий на вращательное тело, равен изменению его момента импульса dL:
                                                           Mdt = d(Jω)  или  Mdt = dL
Где:  Mdt – импульс момента силы (произведение момента силы М на промежуток времени dt)
Jdω = d(Jω) – изменение момента импульса тела,
Jω = L - момент импульса тела есть произведение момента инерции J на угловую скоростьω  ω, а d(Jω) есть dL.

2.  Кинематические характеристики   Вращение твердого тела, как целого характеризуется углом  φ, измеряющегося в угловых градусах или радианах, угловой скоростью  
                                       ω = dφ/dt  (измеряется в рад/с)
и угловым ускорением     
                                       ε = d²φ/dt²   (измеряется в рад/с²).  
При равномерном вращении (T оборотов в секунду),   Частота вращения — число оборотов тела в единицу времени:
                                                     f = 1/T = ω/2\pi    
Период вращения — время одного полного оборота. Период вращения T и его частота f связаны соотношением    
                                                     T = 1/f
                                            
   Линейная скорость точки, находящейся на расстоянии R от оси вращения                                                      v=2 \pi fR= \frac{2 \pi R}{T}  

Угловая скорость вращения тела
                                                    ω = f/Dt = 2\pi/T          
                                                    
      Динамические характеристики   Свойства твердого тела при его вращении описываются моментом инерции твёрдого тела. Эта характеристика входит в дифференциальные уравнения, полученные из уравнений Гамильтона или Лагранжа. Кинетическую энергии вращения можно записать в виде:     
                                       E=\frac{w^{2}J }{2}=2 \pi ^{2} f^{2}J
                                      
       В этой формуле момент инерции играет роль массы, а угловая скорость роль обычной скорости. Момент инерции выражает геометрическое распределение массы в теле и может быть найден из формулы:                       
                                       J= \int { r^{2} } \, dm    

        Момент инерции механической системы относительно неподвижной оси a («осевой момент инерции») — физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:
                                J _{a} =∑ m_{i} r^{2} _{i}

     где: mi — масса i-й точки, ri — расстояние от i-й точки до оси.   Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении.

3.  Маятник представляет собой замкнутую систему.
Если маятник находится в крайней точке, его потенциальная энергия максимальна, а кинетическая равна нулю.
Как только маятник начинает двигаться, егопотенциальная энергия уменьшается, а кинетическая - увеличивается.
В нижней точке кинетическая энергия максимальна, а потенциальная - минимальна. После этого начинается обратный процесс. Накопленная кинетическая энергия двигает маятник вверх и увеличивает, тем самым потенциальную энергию маятника. Кинетическая энергия уменьшается, пока маятник снова не остановится уже в другой крайней точке.
Можно сказать, что в процессе движения маятника происходит переход потенциальной энергии в кинетическую и наоборот.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается постоянной.
     Или так: Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и силами упругости, остается неизменной.
(Сумма кинетической и потенциальной энергии тел называется полной механической энергией)
 
4,7(59 оценок)
Ответ:
MYLITTLEPONY15
MYLITTLEPONY15
05.04.2022

Суммирующая машина Паска́ля, «Паскали́на» (фр. Pascaline) — арифметическая машина, изобретённая французским учёным Блезом Паскалем (1623—1662) в 1642 году.

История

Француз Блез Паскаль начал создавать суммирующую машину «Паскалину» в 1642 году в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и часто выполнял долгие и утомительные расчёты.

Машина Паскаля представляла собой механическое устройство в виде ящичка с многочисленными связанными одна с другой шестерёнками. Складываемые числа вводились в машину при соответствующего поворота наборных колёсиков. На каждое из этих колёсиков, соответствовавших одному десятичному разряду числа, были нанесены деления от 0 до 9. При вводе числа колесики прокручивались до соответствующей цифры. Совершив полный оборот, избыток над цифрой 9 колёсико переносило на соседний разряд, сдвигая соседнее колесо на 1 позицию. Первые варианты «Паскалины» имели пять зубчатых колёс, позднее их число увеличилось до шести или даже восьми, что позволяло работать с большими числами, вплоть до 9 999 999. ответ появлялся в верхней части металлического корпуса. Вращение колёс было возможно лишь в одном направлении, исключая возможность непосредственного оперирования отрицательными числами. Тем не менее машина Паскаля позволяла выполнять не только сложение, но и другие операции, но требовала при этом применения довольно неудобной процедуры повторных сложений. Вычитание выполнялось при дополнений до девятки, которые для считавшему появлялись в окошке, размещённом над выставленным оригинальным значением.

Несмотря на преимущества автоматических вычислений, использование десятичной машины для финансовых расчётов в рамках действовавшей в то время во Франции денежной системы было затруднительным. Расчёты велись в ливрах, су и денье. В ливре насчитывалось 20 су, в су — 12 денье. Использование десятичной системы в недесятичных финансовых расчётах усложняло и без того нелёгкий процесс вычислений.

Тем не менее примерно за 10 лет Паскаль построил около 50 и даже сумел продать около дюжины вариантов своей машины. Несмотря на вызываемый ею всеобщий восторг, машина не принесла богатства своему создателю. Сложность и высокая стоимость машины в сочетании с небольшими вычислительными служили препятствием её широкому распространению. Тем не менее, заложенный в основу «Паскалины» принцип связанных колёс почти на три столетия стал основой для большинства создаваемых вычислительных устройств.

Машина Паскаля стала вторым реально работающим вычислительным устройством после считающих часов Вильгельма Шиккарда (нем. Wilhelm Schickard), созданных в 1623 году.

Переход Франции в 1799 году на метрическую систему коснулся также её денежной системы, которая стала, наконец, десятичной. Однако практически до начала XIX века создание и использование считающих машин оставалось невыгодным. Лишь в 1820 году Шарль Ксавье Тома де Кольмар запатентовал первый механический калькулятор, ставший коммерчески успешным.

Объяснение: почаще заглядывай на вики)

4,4(15 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ